[1] Cai Yunlong, Fu Zeqiang, Dai Erfu. The minimum areas per capita of cultivated land and its implication for the optimization of land resources allocation. Acta Geographica Sinica, 2002, 57(2): 127-134.
[蔡运龙, 傅泽强, 戴尔阜. 区域最小人均耕地面积与耕地资源的调控. 地理学报, 2002, 57(2): 127-134.]
[2] Zhao Yongge. The significant of a talk during the century supersession: the state of Chinese cultivated land, grain and land-use. Urban Research, 1999, (4): 5-11.
[赵永革. 世纪之交的重大话题, 城市研究, 1999, (4): 5-11.]
[3] Makse A H. Modeling urban growth patterns with correlated percolation. Physical Review E, 1998, 58(6): 7054-7062.
[4] Dami?仳n H Z, Susanna C M. Role of intermittency in urban development: a model of large-scale city formation. Physical Review Letters, 1998, 79(3): 523-526.
[5] Schweitzer F, Steinbrink J. Estimation of megacity growth: simple rules versus complex phenomena. Applied Geography, 1998, 18(1): 69-81.
[6] David T H, Colin J T. Urban Geography, 1982, 91-96.
[7] Zhou Yixing. Urban Geography. Beijing: The Commercial Press, 1995. 255-275; 287-294.
[周一星. 城市地理学. 北京: 商务印书馆, 1995. 255-275; 287-294.]
[8] Carlos M U. A simple and efficient test for Zipf's law. Economics Letters, 2000, 66: 257-260.
[9] Chen Yanguang, Liu Jisheng. Reconstructing Steindl's model: from the law of allometric growth to the rank-size of urban system. Scientia Geographica Sinica, 2001, 21(5): 412-416.
[陈彦光, 刘继生. 城市系统的异速生长关系与位序-规模法则——对Steindl模型的修正与发展. 地理科学, 2001, 21(5): 412-416.]
[10] Wu Zongqing, Dai Xuezhen, Yang Wuyang. On rconstruction of Pareto formal and its relationship with development of urban system. Human Geography, 2000, 15(1): 15-19.
[仵宗卿, 戴学珍, 杨吾扬. 帕雷托公式重构及其与城市体系演化. 人文地理, 2000, 15(1): 15-19.]
[11] Chen Yanguang, Yu Bin. Fractal models of interaction among the cities in the urban system of north Henan Province. Journal of Xinyang Teachers College (Natural Science Edition), 1997, 10(4): 38-43.
[陈彦光, 余斌. 豫北地区城市体系相关作用的分形模式. 信阳师范学院学报 (自然科学版), 1997, 10(4): 38-43.]
[12] John R S. An Introduction to Urban Geography. Routledge & Kegan Paul, 1984. 50-51.
[13] Matteo Marsili, Yi-Cheng Zhang. Interacting individuals leading to Zipf's Law. Physical Review Letters, 1998, 80(12): 2741-2744.
[14] Liu Jisheng, Chen Yanguang. A preliminary study of fractal features size distribution of cities in Northeast China. Human Geography, 1999, 14(3): 1-6.
[刘继生, 陈彦光. 东北地区城市规模分布的分形特征. 人文地理, 1999, 14(3): 1-6.]
[15] Liu Jisheng, Chen Yanguang. Fractal studies of urban geography in the past and future. Scientia Geographica Sinica, 2000, 20(2): 166-171.
[刘继生, 陈彦光. 城市地理学的分形研究的回顾与前瞻. 地理科学, 2000, 20(2): 166-171.]
[16] Dai Hezhi. Study on the type of urban scale distribution and its developing mechanism in China. Human Geography, 2001, 16(5): 40-43.
[代合治. 中国城市规模分布类型及其形成机制研究. 人文地理, 2001, 16(5): 40-43.]
[17] Chen Yanguang, Huang Kun. The fractal dimension of urban form: theoretical approach and practical significance. Journal of Xinyang Teacher's College (Natural Science Edition), 2002, 15(1): 62-67.
[陈彦光, 黄昆. 城市形态的分形维数——理论探讨和实践教益. 信阳师范学院学报 (自然科学版), 2002, 15(1): 62-67.]
[18] Chen Yong, Chen Rong, Ai Nanshan et al. Fractal study of urban size. Economic Geography, 1993, 13(3): 48-53.
[陈勇, 陈嵘, 艾南山 等. 城市规模的分形研究. 经济地理, 1993, 13(3): 48-53.]
[19] Yue Wenze, Xu Jianhua. Application of fractal geometry theory in the study of human geography. Geography and Territorial Research, 2001, 17: 48-53.
[岳文泽, 徐建华. 分形理论在人文地理学忠的应用研究. 地理学与国土研究, 2001, 17(2): 51-56.]
|