[1] Matheron G. Principles of geostatistics. Economic Geology, 1963, 58: 1246-1266.
[2] Matheron G. Kriging, or polynomial interpolation procedures. Canadian Mining and Metallurgical Bulletin, 1967, 60: 1041-1045.
[3] Tobler W. A computer movie simulating urban growth in the Detroit Region. Economic Geography, 1970, 46 (2): 234-240.
[4] Cliff A, Ord J. Spatial Autocorrelation. London: Pion, 1973.
[5] Fisher M, Scholten H J, Unwin D. Spatial Analytical Perspectives on GIS. London: Taylor & Francis, 1996.
[6] Anselin L. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic, 1988.
[7] Haining R P. Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University, 2003.
[8] Ripley B D. Spatial Statistics. New York: John Wiley & Sons. Inc., 1981.
[9] Griffith D A. Spatial Autocorrelation and Spatial Filtering. Springer, 2003.
[10] Stark K E, Arsenault A, Bradfield G E. Variation in soil seed bank species composition of a dry coniferous forest: Spatial scale and sampling considerations. Plant Ecology, 2008, 197(2): 173-181.
[11] Nakamoto S, Fang Z, Matsuura T. Spatial sampling requirements for tropical Pacific sea surface temperature variability. Journal of Geophysical Research, 1994, 99(C9): 18363-18370.
[12] Nick G, Howard C J, Mccormick Mark I. Spatial variability in reef fish distribution, abundance, size and biomass: A multi-scale analysis. Marine Ecology, 2001, 214: 237-251.
[13] Dessard H, Bar-Hen A. Experimental design for spatial sampling applied to the study of tropical forest regeneration. Canadian Journal of Forest Research, 2005, 35(5): 1149-1155.
[14] Lianfa L, Wang Jinfeng. Optimal decision-making model of spatial sampling for survey of China's land with remotely sensed data. Science in China (Series D), 2005, 48(6): 752-764.
[15] Kumar N. Spatial sampling design for a demographic and health survey. Population Research and Policy Review, 2007, 26(5): 581-599.
[16] Fuentes M, Chaudhuri A, Holland D. Bayesian entropy for spatial sampling design of environmental data. Environmental and Ecological Statistics, 2007, 14(3): 323-340.
[17] Lark R M. Optimized spatial sampling of soil for estimation of the variogram by maximum likelihood. Geoderma, 2002, 105(1/2): 49-80.
[18] Christakos G, Killam B R. Sampling design for classifying contaminant level using annealing search algorithms. Water Resources Research, 1993, 29(12): 4063-4076.
[19] Feng Shiyong. Some hotspot issues on the application and theory of survey sampling. Statistics & Information Forum, 2007, 22(1): 5-31.
[冯士雍. 抽样调查应用与理论中的若干前沿问题. 统计与信息论坛, 2007, 22(1): 5-31.]
[20] Feng Shiyong, Shi Xiquan. Sampling Surveysalysis: Theory, Methods and Case Analysis. Shanghai: Shanghai Scientific & Technical Publishers, 1996.
[冯士雍, 施锡铨. 抽样调查: 理论、方法与实践. 上海: 上海科学技术出版社, 1996.]
[21] Zhao Xianwen. Quantitative Methods by Remote Sensing in Forestry. Beijing: China Forestry Publishing House, 1997.
[赵宪文. 林业遥感定量估测. 北京: 中国林业出版社, 1997.]
[22] Wu Bingfang. Operational remote sensing methods for agricultural statistics. Acta Geographica Sinica, 2000, 55 (1): 25-35.
[吴炳方. 全国农情监测与估产运行化遥感方法. 地理学报, 2000, 55(1): 25-35.]
[23] Li Lianfa, Wang Jinfeng, Liu Jiyuan. Optimal decision-making model of spatial sampling for survey of China's land with remotely sensed data. Science in China (Series D), 2005, 48(5).
[24] Li Lianfa, Wang Jinfeng. Integrated spatial sampling modeling of geospatial data. Science in China (Series D), 2004, 47 (3): 201-208.
[25] Wang Jinfeng, Zhuang Dafang, Li Lianfa. Spatial sampling design for monitoring the area of cultivated land. International Journal of Remote Sensing, 2002, 13(2): 263-284.
[26] Wang Jinfeng, Robert H, Wise S. Spatial sampling design for monitoring drought, flood and earthquake in China. Progress in Natural Science, 1999, (4).
[王劲峰, Robert H, Wise S. 中国干旱洪水地震灾害监测空间采样设计. 自然 科学进展, 1999, (4).]
[27] Wang X J, Qi F. The effects of sampling design on spatial structure analysis of contaminated soil. Science of the Total Environment, 1998, 223(1-3): 29-41.
[28] Delmelle E. Optimization of second-phase spatial sampling using auxiliary information. In: Department of Geography, State University of New York at Buffalo, 2005. 108.
[29] Cooper C. Sampling and variance estimation on continuous domains. Environmetrics, 2006, 17(6): 539-553.
[30] Dalenius T, Hájek J, Zubrzycki S. On plane sampling and related geometrical problems. In: Proceedings of the 4th Berkeley Symposium on Probability and Mathematical Statistics, 1961. 125-150.
[31] Olea R A. Sampling design optimization for spatial functions. Mathematical Geology, 1984, 16: 369-392.
[32] Overton W, Stehman S. Properties of designs for sampling continuous spatial resources from a triangular grid. Communications in Statistics Part A: Theory and Methods, 1993, 22: 2641-2660.
[33] Stevens Jr D L, Olsen A R. Spatially Restricted surveys over time for aquatic resources. Journal of Agricultural, Biological, and Environmental Statistics, 1999, 4: 415-428.
[34] Stevens Jr D L, Olsen A R. Spatially-restricted random sampling designs for design-based and model-based estimation. In: Accuracy 2000: Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. The Netherlands: Delft University Press, 2000. 609-616.
[35] Stevens Jr D L, Olsen A R. Spatially-balanced sampling of natural resources. Journal of the American Statistical Association, 2004, 99: 262-277.
[36] Banjevic M. Optimal network designs in spatial statistics. In: Department of Statistics, Stanford University, 2004. 114.
[37] Nunes L M. Optimal estuarine sediment monitoring network design with simulated annealing. Journal of Environmental Management, 2006, 78: 294-304.
[38] Wagner B J. Sampling design methods for groundwater modeling under uncertainty. Water Resources Research, 1995, 31(10): 2581-2591.
[39] Yan S Q, Minsker B. Optimal groundwater remediation design using an Adaptive Neural Network Genetic Algorithm. Water Resources Research, 2006. 42.
[40] Zhu Z Y. Optimal sampling design and parameter estimation of Gaussian random fields. In: Department of Statistics, The University of Chicago, 2002. 132.
[41] Zimmerman D L. Optimal network design for spatial prediction, covariance parameter estimation, and empirical prediction. Environmetrics, 2006, 17: 635-652.
[42] Brus D J, de Gruijter J J. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma, 1997, 80: 1-44.
[43] Haining R P. Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University, 2003.
[44] S覿rndal C E, Swensson B, Wretman J. Model Assisted Survey Sampling. New York: Springer, 1992.
[45] Defeo O, Rueda M. Spatial structure, sampling design and abundance estimates in sandy beach macroinfauna: Some warnings and new perspectives. Marine Biology, 2002, 140(6): 1215-1225.
[46] Flores L A, Martinez L I, Ferrer C M. Systematic sample design for the estimation of spatial means. Environmetrics, 2003, 14(1): 45-61.
[47] Lark R M, Cullis B R. Model-based analysis using REML for inference from systematically sampled data on soil. European Journal of Soil Science, 2004, 55(4): 799-813.
[48] Little R J. To model or not to model? Competing modes of inference for finite population sampling. Journal of the American Statistical Association, 2004, 99: 546-556.
[49] Papritz A, Webster R. Estimating temporal change in soil monitoring: Sampling from simulated fields. EuropeanJournal of Soil Science, 1995, 46(1): 13-27.
[50] Cordy C B, Thompson C M. An application of the deterministic variogram to design-based variance estimation. Mathematical Geology, 1995, 27: 173-205.
[51] Jiang Baofa, Xu Xiaofei, Wang Jichuan. Time/space location sampling and its application in survey of outpatients visiting sexually transmitted diseases clinic. Chinese Journal of Health Statistics, 2003, 20(4): 502-702.
[姜宝法, 徐晓 菲, 王济川. 时间/ 空间定位抽样设计及其在性病门诊病人调查中的应用. 中国卫生统计, 2003, 20(4): 502-702.]
[52] Jin Yongjin, Hou Zhiqiang. Self-weighting sample design for the China's population changes survey. Statistics & Information Forum, 2007, 22(4): 11-13.
[金勇进, 侯志强. 中国人口变动调查的自加权抽样设计. 统计与信息论坛, 2007, 22(4): 11-13.]
[53] Cochran W G. Sampling techniques. 3rd edn. New York: John Wiley & Sons, 1977.
[54] Sukhatme B V. Testing the hypothesis that two populations differ only in location. The Annals of Mathematical Statistics, 1958, 29(1): 60-78.
[55] De Gruijter J J, Braak C J F T. Model free estimation from spatial samples: A reappraisal of classical sampling theory Mathematical Geology, 1990, 22(4): 407-415.
[56] Stevens Jr. D L. Spatial properties of design-based versus model-based approaches to environmental sampling. In: Caetano M, Painho M (eds.). 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, 2006.
[57] Cressie N A C. Statistics for Spatial Data. New York: Wiley-Interscience, 1993.
[58] Li Lianfa, Wang Jinfeng, Liu Jiyuan. Optimization of decision-making for spatial sampling in remote sensing survey of land. Science in China (Series D), 2004, (10): 975-982.
[李连发, 王劲峰, 刘纪远. 国土遥感调查的空间抽样优化决 策. 中国科学(D 辑), 2004, (10): 975-982.]
[59] Li Lianfa, Wang Jinfeng. Spatial sampling model for geographic data. Progress in Natural Science, 2002, (5).
[李连发, 王劲峰. 地理数据空间抽样模型. 自然科学进展, 2002, (5).]
[60] Niu Wenjie. Prior information residual Kriging. Computer Engineering and Applications, 2004, (35).
[牛文杰. 基于先 验信息的残余克里金法的研究. 计算机工程与应用, 2004, (35).]
[61] Zhao Xuehui. Sample survey methods and theory progress. Statistics & Information Forum , 2003, 18(5): 42-72.
[赵雪 慧. 抽样调查理论和方法的最新进展. 统计与信息论坛, 2003, 18(5): 42-72.]
[62] Li Chonggui, Zhao Xianwen. Determining the optimum sample plots for establishing canopy density estimating equation in monitoring area. Journal of Beijing Forestry University, 2005. 27(6): 24-27.
[李崇贵, 赵宪文. 确定监测区 域建立森林郁闭度估测方程最优样地的研究. 北京林业大学学报, 2005, 27(6): 24-27.]
[63] Matheron G. Les Variables Régionalisées et Leur Estimation. Paris: Masson, 1965.
[64] Matheron G. The Theory of Regionalized Variables and Its Applications. Fontainbleau: Ecole de Mines, 1971.
[65] Oliver M A, Webster R. Kriging: A method of interpolation for geographical information systems. International Journal of Geographical Information Science, 1990, 4(3): 313-332.
[66] Laslett G M, McBratney A B, Pahl P J. Comparison of several spatial prediction methods for soil pH. European Journal of Soil Science, 1987, 38: 325-341.
[67] Cressie N, Hawkins D M. Robust estimation of the variogram I. Mathematical Geology, 1980, 12(2): 115-125.
[68] Webster R, Oliver M A. How large a sample is needed to estimate the regional variogram adequately? In: Soares A (ed). Geostatistics Tro'ia '92. Dordrecht: Kluwer Academic, 1993, 155-165.
[69] Hughes J P, Lettenmaier D P. Data requirements for Kriging: Estimation and network design. Water Resources Research, 1981, 17: 1641-1650.
[70] Russo D. Design of an optimal sampling network for estimating the variogram. Soil Science Society of America Journal, 1984, 48: 708-716.
[71] Warrick A W, Myers D E. Optimization of sampling locations for variogram. Calculations Water Resources Research, 1987, 23: 496-500.
[72] Hammond L C, Pritchett W L, Chew U. Soil sampling in relation to soil heterogeneity. Soil Science Society of America Proceedings, 1958, 22: 548-552.
[73] Olson J S, Potter P E. Variance components of crossbedding direction in some basal Pennsylvanian sandstones of the Eastern Interior Basin: statistical methods. Journal of Geology, 1954, 62: 26-49.
[74] Webster R, Butler B E. Soil survey and classification studies at Ginninderra. Australian Journal of Soil Research, 1976, 14: 1-24.
[75] Yfantis E A, Flatman G T, Behar J V. Efficiency of Kriging estimation for square, triangular, and hexagonal grids. Mathematical Geology, 1987, 19(3): 183-205.
[76] Webster R et al. Estimating the spatial scales of regionalized variables by nested sampling, hierarchical analysis ofvariance and residual maximum likelihood. Computers & Geosciences, 2006, 32(9): 1320-1333.
[77] Arbia G, Lafratta G. Anisotropic spatial sampling designs for urban pollution. Journal of the Royal Statistical Society (Series C): Applied Statistics, 2002, 51: 223-234.
[78] Brus D J, Jansen M J W, Gruijter J J D. Optimizing two- and three-stage designs for spatial inventories of natural resources by simulated annealing. Environmental and Ecological Statistics, 2002, 9(1): 71-88.
[79] Bueso M C et al. A study on sensitivity of spatial sampling designs to a priori discretization schemes. Environmental Modelling & Software, 2005, 20(7): 891-902.
[80] Chao C T, Thompson S K. Optimal adaptive selection of sampling sites. Environmetrics, 2001, 12: 517-538.
[81] Van Groenigen J W, Pieters G, Stein A. Optimizing spatial sampling for multivariate contamination in urban areas. Environmetrics, 2000, 11(2): 227-244.
[82] Van Groenigen J W, Siderius W, Stein A. Constrained optimisation of soil sampling for minimisation of the kriging variance. Geoderma, 1999, 87: 239-259.
[83] Hoeting J A et al. Model selection for geostatistical models. Ecological Applications, 2006, 16(1): 87-98.
[84] Lin Y P, Rouhani S. Multiple-point variance analysis for optimal adjustment of a monitoring network. Environmental Monitoring and Assessment, 2001, 69(3): 239-266.
[85] Rogerson P A, Delmelle E, Batta R. Optimal sampling design for variables with varying spatial importance. Geographical Analysis, 2004, 36(2): 177-194.
[86] Saito H et al. Geostatistical interpolation of object counts collected from multiple strip transects: Ordinary Kriging versus finite domain kriging. Stochastic Environmental Research and Risk Assessment, 2005, 19(1): 71-85.
[87] Simbahan G C, Dobermaan A. Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma, 2006, 133: 345-362.
[88] Wiens D P. Robustness in spatial studies II: Minimax design. Environmetrics, 2005, 16(2): 205-217.
[89] Papritz A, Webster R. Estimating temporal change in soil monitoring: 2. Sampling from simulated fields. European Journal of Soil Science, 1995, 46(1): 13-27.
[90] Journel A G. Nonparametric geostatistics for risk and additional sampling assessment. In: Principles of Environmental Sampling. American Chemical Society, 1988: 45-72.
[91] Van Groenigen J W, Stein A. Constrained optimization of spatial sampling using continuous simulated annealing. Journal of Environmental Quality, 1998, 27: 1078-1086.
[92] Stevens Jr D L. Variable density grid-based sampling designs for continuous spatial populations. Environmetrics, 1997, 8: 167-195.
[93] Thompson S K. Factors infuencing the efficiency of adaptive cluster sampling, in technical report 94-0301. Technical Reports and Reprint Series. Center for Statistical Ecology and Environmental Statistics, The Pennsylvania State University, University Park, PA, 1994.
[94] Smith D R, Conroy M J, Brakhage D H. Efficiency of adaptive cluster sampling for estimating density of wintering waterfowl. Biometrics, 1995, 51: 777-788.
[95] Roesch F A Jr. Adaptive cluster sampling for forest inventories. Forest Science, 1993, 39: 655-669.
[96] Thompson S K. Adaptive cluster sampling based on order statistics. Environmetrics, 1996, 7: 123-133
[97] van Groenigen J W, Pieters G, Stein A. Optimizing spatial sampling for multivariate contamination in urban areas. Environmetrics, 2000, 11(2): 227-244.
[98] Zimmerman D L, Holland D M. Complementary co-kriging: Spatial prediction using data combined from several environmental monitoring networks Environmetrics, 2005, 16(3): 219-234.
[99] Bertolino F, Luciano A, Racugno W. Some aspects of detection networks optimization with the kriging procedure. Metron, 1983, 41(3): 91-107.
[100] Cattle J A, McBratney A B, Minasny B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination. Journal of Environmental Quality, 2002, 31(5): 1576-1588.
[101] Chica-Olmo M, Luque-Espinar J A. Applications of the local estimation of the probability distribution function in environmental sciences by kriging methods. Inverse Problems, 2002, 18(1): 25-36.
[102] Emery X. A disjunctive Kriging program for assessing point-support conditional distributions. Computers & Geosciences, 2006, 32(7): 965-983.
[103] Fuentes M. A high frequency Kriging approach for non-stationary environmental processes. Environmetrics, 2001, 12 (2): 469-483.
[104] Lyon S W et al. Defining probability of saturation with indicator kriging on hard and soft data. Advances in Water Resources, 2006, 29(2): 181-193.
[105] Muller T G et al. Map quality for ordinary Kriging and inverse distance weighted interpolation. Nutrient Management& Soil & Plant Analysis, 2004, 68: 2042-2047.
[106] Triantafilis J et al. Mapping of salinity risk in the lower Namoi valley using non-linear kriging methods. Agricultural Water Management, 2004, 69(3): 203-229.
[107] Wang X J et al. Kriging and PAH pollution assessment in the topsoil of Tianjin area. Bulletin of Environmental Contamination and Toxicology, 2003, 71(1): 189-195.
[108] Yeh M S, Lin Y P, Chang L C. Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environmental Geology, 2006, 50(1): 101-121.
[109] Warrick A W, Myers D E. Optimization of sampling locations for variogram calculations. Water Resources Research, 1987, 23(3): 496-500.
[110] Groenigen J W. Spatial simulated annealing for optimizing sampling. In: Soares A, Gomez-Hernandez J, Froidevaux R (eds). GeoENV I: Geostatistics for Environmental Applications. Lisbon, Portugal: Kluwer Academic Publishers, 1997. 351-361.
[111] Zio S D, Fontanella L, Ippoliti L. Optimal spatial sampling schemes for environmental surveys Environmental and Ecological Statistics, 2004, 11(4): 397-414.
[112] Hastings H M, Sugihara G. Fractals: A User's Guide for the Natural Sciences. Oxford University Press, 1993.
|