地理学报 ›› 2021, Vol. 76 ›› Issue (5): 1274-1293.doi: 10.11821/dlxb202105017
郭向阳1,2(), 穆学青3, 丁正山1,2(
), 秦东丽1,2
收稿日期:
2020-01-08
修回日期:
2020-12-18
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
丁正山(1967-), 男, 江苏南京人, 博士, 教授, 博导, 主要从事区域发展研究。E-mail: dingzhengshan@263.net作者简介:
郭向阳(1990-), 男, 河南开封人, 博士生, 主要从事城市可持续发展与旅游地理研究。E-mail: guoxiangyang01@163.com
基金资助:
GUO Xiangyang1,2(), MU Xueqing3, DING Zhengshan1,2(
), QIN Dongli1,2
Received:
2020-01-08
Revised:
2020-12-18
Published:
2021-05-25
Online:
2021-07-25
Supported by:
摘要:
探索多维城市化对PM2.5浓度的非线性影响及驱动机制,是城市群高质量发展的重要课题。以2000—2017年长江三角洲地区城市面板遥感影像和统计数据为样本,采用反距离权重空间插值、空间自相关和标准差椭圆等方法探查其PM2.5浓度的时空演变规律,并运用系统动态面板回归模型研判多维城市化对PM2.5浓度的非线性影响及驱动机制。结果表明:① 2000—2017年,长三角PM2.5浓度由低污染等级向高污染等级演替;PM2.5浓度整体呈现由东南向西北方向递增的空间趋势。② PM2.5浓度呈现显著空间集聚与关联特征;PM2.5浓度重心总体由东南向西北方向偏移,在东西方向上趋向分散,在南北方向上逐渐极化。③ 长三角城市化子系统不同发展阶段对PM2.5浓度的非线性影响存在显著差异。经济城市化与PM2.5浓度呈倒“N”型曲线关系,二者存在环境库兹涅茨曲线(EKC)关系,当人均GDP大于63709元时,经济城市化对PM2.5浓度将产生抑制效应,表明城市综合质量提升和发展方式转变是PM2.5治理的关键;而人口城市化、土地城市化与PM2.5浓度的关系仅是倒“U”型曲线的左侧部分,二者与空气质量改善的拐点尚有一定距离。人口规模、外商直接投资、工业产业结构均对PM2.5浓度具有显著的正向效应,而环境规制对PM2.5浓度具有显著的抑制效应。长三角PM2.5浓度的时空异质性特征是在经济社会因素和政府调控等诸多因素交互叠加、循环累积作用下形成,其中,经济社会因素扮演着主角。本文为探索多维城市化对PM2.5浓度的非线性影响提供了新视角,以期为实现长三角环境保护与城市可持续发展的协调提供重要参考。
郭向阳, 穆学青, 丁正山, 秦东丽. 长三角多维城市化对PM2.5浓度的非线性影响及驱动机制[J]. 地理学报, 2021, 76(5): 1274-1293.
GUO Xiangyang, MU Xueqing, DING Zhengshan, QIN Dongli. Nonlinear effects and driving mechanism of multidimensional urbanization on PM2.5 concentrations in the Yangtze River Delta[J]. Acta Geographica Sinica, 2021, 76(5): 1274-1293.
表1
2000—2017年长三角PM2.5浓度的全局Moran's I指数变化
年份 | Moran's I | Z统计量 | P值 | 年份 | Moran's I | Z统计量 | P值 |
---|---|---|---|---|---|---|---|
2000 | 0.773 | 6.524 | < 0.001 | 2009 | 0.890 | 7.441 | < 0.001 |
2001 | 0.826 | 6.900 | < 0.001 | 2010 | 0.905 | 7.524 | < 0.001 |
2002 | 0.857 | 7.154 | < 0.001 | 2011 | 0.891 | 7.466 | < 0.001 |
2003 | 0.874 | 7.294 | < 0.001 | 2012 | 0.856 | 7.226 | < 0.001 |
2004 | 0.848 | 7.109 | < 0.001 | 2013 | 0.884 | 7.397 | < 0.001 |
2005 | 0.832 | 6.988 | < 0.001 | 2014 | 0.872 | 7.316 | < 0.001 |
2006 | 0.891 | 7.404 | < 0.001 | 2015 | 0.902 | 7.528 | < 0.001 |
2007 | 0.882 | 7.390 | < 0.001 | 2016 | 0.892 | 7.413 | < 0.001 |
2008 | 0.864 | 7.272 | < 0.001 | 2017 | 0.905 | 7.566 | < 0.001 |
表2
2000—2017年长三角PM2.5浓度的标准差椭圆参数
年份 | 重心坐标 | x轴(km) | y轴(km) | 旋转角θ(°) | 偏移方向 | 偏移距离(km) |
---|---|---|---|---|---|---|
2000 | 118°53'27''E,31°43'34''N | 275.98 | 167.73 | 134.30 | ||
2001 | 118°52'50''E,31°46'79''N | 276.95 | 165.59 | 133.25 | 西偏北 | 3.905 |
2002 | 118°51'24''E,31°48'14''N | 271.75 | 168.90 | 132.81 | 西偏北 | 1.919 |
2003 | 118°49'38''E,31°50'70''N | 275.84 | 169.10 | 132.59 | 西偏北 | 3.348 |
2004 | 118°49'34''E,31°44'53''N | 270.55 | 170.00 | 133.53 | 东偏南 | 6.816 |
2005 | 118°47'32''E,31°47'18''N | 271.79 | 170.33 | 133.55 | 西偏北 | 3.515 |
2006 | 118°49'12''E,31°53'59''N | 271.25 | 169.77 | 133.75 | 西偏北 | 7.329 |
2007 | 118°44'12''E,31°52'14''N | 274.33 | 168.69 | 132.33 | 西偏南 | 5.006 |
2008 | 118°48'26''E,31°47'34''N | 271.70 | 169.67 | 132.61 | 东偏南 | 6.625 |
2009 | 118°49'90''E,31°50'47''N | 268.39 | 170.51 | 132.10 | 西偏北 | 3.812 |
2010 | 118°44'56''E,31°55'45''N | 274.41 | 170.92 | 132.86 | 西偏北 | 7.502 |
2011 | 118°47'44''E,31°52'50''N | 266.38 | 170.47 | 132.95 | 东偏南 | 4.267 |
2012 | 118°47'55''E,31°49'10''N | 271.19 | 169.71 | 133.12 | 东偏南 | 3.782 |
2013 | 118°47'17''E,31°52'44''N | 270.78 | 169.78 | 132.58 | 西偏北 | 3.731 |
2014 | 118°45'10''E,31°49'50''N | 269.08 | 169.95 | 133.55 | 西偏南 | 3.813 |
2015 | 118°46'10''E,31°54'47''N | 263.21 | 171.55 | 131.61 | 西偏北 | 5.607 |
2016 | 118°48'22''E,31°57'29''N | 266.51 | 170.29 | 132.84 | 东偏北 | 9.152 |
2017 | 118°36'47''E,31°58'40''N | 266.33 | 171.91 | 132.80 | 西偏南 | 11.198 |
表3
变量选取及其描述性统计结果
变量名称 | 符号 | 具体指标 | 单位 | 均值 | 标准误差 | 最小值 | 最大值 |
---|---|---|---|---|---|---|---|
PM2.5浓度 | PM | PM2.5年均浓度值 | μg/m3 | 46.310 | 13.170 | 14.900 | 74.040 |
经济城市化 | E-URB | 人均GDP | 元/人 | 39654 | 35134 | 1360 | 171765 |
人口城市化 | P-URB | 非农业人口数量/总人口 | % | 36.476 | 18.394 | 7.760 | 84.570 |
土地城市化 | L-URB | 城市建设用地面积/总面积 | % | 9.663 | 10.012 | 0.330 | 60.770 |
人口规模 | POP | 常住人口数量 | 万人 | 502.980 | 343.180 | 44.270 | 2426 |
外商投资 | FDI | 外商直接投资额占GDP的比重 | % | 7.360 | 7.650 | 0.110 | 71.160 |
产业结构 | IND | 第二产业产值占GDP的比重 | % | 50.340 | 941.520 | 26.320 | 76.000 |
环境规制 | ER | 环境污染治理投资额占GDP的比重 | % | 0.810 | 0.860 | 0.050 | 3.910 |
表4
多维城市化对PM2.5的非线性影响面板回归分析结果
自变量 | 经济城市化(E-URB) | 人口城市化(P-URB) | 土地城市化(L-URB) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OLS | FE | SGMM | OLS | FE | SGMM | OLS | FE | SGMM | |||
模型1 | 模型2 | 模型7 | 模型8 | 模型9 | 模型14 | 模型15 | 模型16 | 模型21 | |||
PM_2 | 0.805*** (291.050) | 0.585*** (55.620) | 0.690*** (75.470) | 0.857*** (476.620) | 0.646*** (66.460) | 0.753*** (86.870) | 0.818*** (320.880) | 0.717*** (99.490) | 0.742*** (109.320) | ||
lnURB | -0.102*** (-9.450) | -0.179*** (-17.790) | -10.262*** (-8.840) | 0.168*** (12.730) | 0.067*** (14.710) | 0.095*** (4.670) | 0.076*** (4.520) | 0.011** (2.280) | 0.008*** (5.500) | ||
lnURB2 | 0.452*** (22.306) | 0.301*** (32.930) | 0.978*** (12.520) | 0.355*** (10.250) | 0.309*** (10.220) | 0.315*** (6.240) | 0.032*** (2.620) | 0.033*** (2.730) | 0.041*** (5.040) | ||
lnURB3 | -0.121*** (-3.336) | -0.101*** (-3.264) | -0.031*** (-9.328) | ||||||||
lnPOP | 0.135*** (7.450) | 0.122*** (7.780) | 0.140*** (6.950) | 0.098*** (5.760) | 0.095*** (6.480) | 0.025*** (4.220) | 0.126*** (6.970) | 0.119*** (7.680) | 0.037*** (6.820) | ||
lnFDI | 0.068*** (5.430) | 0.090*** (8.110) | 0.061*** (7.790) | 0.095*** (8.200) | 0.105*** (10.280) | 0.034*** (10.030) | 0.078*** (6.360) | 0.094*** (8.640) | 0.032*** (10.190) | ||
lnIND | 0.206*** (2.950) | 0.231*** (3.730) | 0.229*** (7.100) | 0.441*** (6.670) | 0.412*** (7.040) | 0.142*** (9.160) | 0.234*** (3.320) | 0.256*** (4.100) | 0.132*** (7.150) | ||
lnER | -0.040*** (-5.320) | -0.040*** (-6.170) | -0.044*** (-7.360) | -0.031*** (-4.390) | -0.033*** (-5.330) | -0.008*** (-3.680) | -0.040*** (-5.310) | -0.039*** (-6.080) | -0.013*** (-4.150) | ||
_cons | 3.075*** (602.120) | -0.427*** (-4.370) | 6.561*** (3.400) | 2.722*** (6.300) | 4.365*** (10.700) | 1.233*** (12.870) | 0.701*** (57.960) | 0.693*** (49.430) | 1.661*** (13.120) | ||
AR(1) | 0.001 | 0.004 | 0.000 | 0.005 | 0.003 | 0.000 | 0.012 | 0.012 | 0.000 | ||
AR(2) | 0.125 | 0.138 | 0.202 | 0.126 | 0.118 | 0.198 | 0.128 | 0.146 | 0.233 | ||
Sargan test | 0.114 | 0.126 | 0.232 | 0.142 | 0.121 | 0.236 | 0.164 | 0.137 | 0.246 |
[1] |
Bai X M, Shi P J, Liu Y S. Society: Realizing China's urban dream. Nature, 2014,509(7499):158-160.
doi: 10.1038/509158a |
[2] |
Wang Z B, Liang L W, Sun Z, et al. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. Journal of Environmental Management, 2019,243:227-239.
doi: 10.1016/j.jenvman.2019.04.088 |
[3] |
Zhu W W, Wang M C, Zhang B B. The effects of urbanization on PM2.5 concentrations in China's Yangtze River Economic Belt: New evidence from spatial econometric analysis. Journal of Cleaner Production, 2019,239:118065. DOI: 10.1016/j.jclepro.2019.118065.
doi: 10.1016/j.jclepro.2019.118065 |
[4] |
Tian S L, Pan Y P, Liu Z R, et al. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China. Journal of Hazardous Materials, 2014,279:452-460.
doi: 10.1016/j.jhazmat.2014.07.023 |
[5] |
Song C B, He J J, Wu L, et al. Health burden attributable to ambient PM2.5 in China. Environmental Pollution, 2017,223:575-586.
doi: 10.1016/j.envpol.2017.01.060 |
[6] | Zhao C, Wang Y, Su Z L, et al. Respiratory exposure to PM2.5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. Science of The Total Environment, 2020,730(8):139-145. |
[7] |
Sun Y L, Zhuang G S, Tang A H, et al. Chemical characteristics of PM2.5 and PM10 in Haze-Fog episodes in Beijing. Environmental Science & Technology, 2006,40(10):3148-3155.
doi: 10.1021/es051533g |
[8] |
Hao Y, Liu Y M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. Journal of Cleaner Production, 2016,112:1443-1453.
doi: 10.1016/j.jclepro.2015.05.005 |
[9] | Wang Zhenbo, Liang Longwu, Wang Xujing. Spatio-temporal evolution patterns and influencing factors of PM2.5 in Chinese urban agglomerations. Acta Geographica Sinica, 2019,74(12):2614-2630. |
[ 王振波, 梁龙武, 王旭静. 中国城市群地区PM2.5时空演变格局及其影响因素. 地理学报, 2019,74(12):2614-2630.] | |
[10] |
Fang C L, Wang Z B, Xu G. Spatial-temporal characteristics of PM2.5 in China: A city-level perspective analysis. Journal of Geographical Sciences, 2016,26(11):1519-1532.
doi: 10.1007/s11442-016-1341-9 |
[11] |
Cao C, Jiang W, Wang B, et al. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event. Environmental Science & Technology, 2014,48(3):1499-1507.
doi: 10.1021/es4048472 |
[12] |
Zhang Y, Shuai C Y, Bian J, et al. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. Journal of Cleaner Production, 2019,218:96-107.
doi: 10.1016/j.jclepro.2019.01.322 |
[13] | Wang Zhenbo, Liang Longwu, Lin Xiongbin, et al. Control models and effect evaluation of air pollution in Jing-Jin-Ji urban agglomeration. Environmental Science, 2017,38(10):4005-4014. |
[ 王振波, 梁龙武, 林雄斌, 等. 京津冀城市群空气污染的模式总结与治理效果评估. 环境科学, 2017,38(10):4005-4014.] | |
[14] |
Wu J N, Zhang P, Yi H T, et al. What causes haze pollution? An empirical study of PM2.5 concentrations in Chinese cities. Sustainability, 2016,8(2):132. DOI: 10.3390/su8020132.
doi: 10.3390/su8020132 |
[15] |
Xu B, Lin B Q. What cause large regional differences in PM2.5 pollutions in China? Evidence from quantile regression model. Journal of Cleaner Production, 2018,174:447-461.
doi: 10.1016/j.jclepro.2017.11.008 |
[16] |
Lin B Q, Zhu J P. Changes in urban air quality during urbanization in China. Journal of Cleaner Production, 2018,188:312-321.
doi: 10.1016/j.jclepro.2018.03.293 |
[17] |
Xu B, Lin B Q. Regional differences of pollution emissions in China: Contributing factors and mitigation strategies. Journal of Cleaner Production, 2016,112:1454-1463.
doi: 10.1016/j.jclepro.2015.03.067 |
[18] | He Xiang, Lin Zhenshan, Liu Huiyu, et al. Analysis of the driving factors of PM2.5 in Jiangsu province based on grey correlation model. Acta Geographica Sinica, 2016,71(7):1119-1129. |
[ 贺祥, 林振山, 刘会玉, 等. 基于灰色关联模型对江苏省PM2.5浓度影响因素的分析. 地理学报, 2016,71(7):1119-1129.] | |
[19] | Zhou Liang, Zhou Chenghu, Yang Fan, et al. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2011. Acta Geographica Sinica, 2017,72(11):2079-2092. |
[ 周亮, 周成虎, 杨帆, 等. 2000—2011年中国PM2.5时空演化特征及驱动因素解析. 地理学报, 2017,72(11):2079-2092.] | |
[20] |
Tang D L, Li L, Yang Y H. Spatial econometric model analysis of foreign direct investment and haze pollution in China. Polish Journal of Environmental Studies, 2016,25(1):317-324.
doi: 10.15244/pjoes/60856 |
[21] | Liu Haimeng, Fang Chuanglin, Huang Jiejun, et al. The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 2018,73(1):177-191. |
[ 刘海猛, 方创琳, 黄解军, 等. 京津冀城市群大气污染的时空特征与影响因素解析. 地理学报, 2018,73(1):177-191.] | |
[22] | Lin Xueqin, Wang Dai. Spatio-temporal variations and socio-economic driving forces of air quality in Chinese cities. Acta Geographica Sinica, 2016,71(8):1357-1371. |
[ 蔺雪芹, 王岱. 中国城市空气质量时空演化特征及社会经济驱动力. 地理学报, 2016,71(8):1357-1371.] | |
[23] |
Luo K, Li G D, Fang C L, et al. PM2.5 mitigation in China: Socioeconomic determinants of concentrations and differential control policies. Journal of Environmental Management, 2018,213:47-55.
doi: 10.1016/j.jenvman.2018.02.044 |
[24] | Li Guangqin, Qin Jiahong, He Renwei. Spatial-temporal evolution and influencing factors of China's PM2.5 pollution. Economic Geography, 2018,38(8):11-18. |
[ 李光勤, 秦佳虹, 何仁伟. 中国大气PM2.5污染演变及其影响因素. 经济地理, 2018,38(8):11-18.] | |
[25] |
Cheng Z H, Li L S, Liu J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecological Indicators, 2017,82:61-75.
doi: 10.1016/j.ecolind.2017.06.043 |
[26] | Xu Shan, Zou Bin, Gong Junxia. Analysis of the spatial-temporal association between urbanization and PM2.5 concentration during 2001-2015 period in Mainland China. China Environmental Science, 2019,39(2):469-477. |
[ 许珊, 邹滨, 宫俊霞. 2001—2015年中国城镇化与PM2.5浓度时空关联特征. 中国环境科学, 2019,39(2):469-477.] | |
[27] |
Fang C L, Liu H M, Li G D, et al. Estimating the impact of urbanization on air quality in China using spatial regression models. Sustainability, 2015,7(11):15570-15592.
doi: 10.3390/su71115570 |
[28] |
Wang S J, Zhou C S, Wang Z B, et al. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. Journal of Cleaner Production, 2017,142:1800-1809.
doi: 10.1016/j.jclepro.2016.11.104 |
[29] | Liang Wei, Yang Ming, Zhang Yanwei. Will the increase of the urbanization rate inevitably exacerbate haze pollution? A discussion of the spatial spillover effects of urbanization and haze pollution. Geographical Research, 2017,36(10):1947-1958. |
[ 梁伟, 杨明, 张延伟. 城镇化率的提升必然加剧雾霾污染吗: 兼论城镇化与雾霾污染的空间溢出效应. 地理研究, 2017,36(10):1947-1958.] | |
[30] |
Friedmann J. Four theses in the study of China's urbanization. International Journal of Urban and Regional Research, 2006,30(2):440-451.
doi: 10.1111/ijur.2006.30.issue-2 |
[31] |
Yang D Y, Ye C, Wang X M, et al. Global distribution and evolvement of urbanization and PM2.5 (1998-2015). Atmospheric Environment, 2018,182:171-178.
doi: 10.1016/j.atmosenv.2018.03.053 |
[32] |
Ding Y T, Zhang M, Qian X Y, et al. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. Journal of Cleaner Production, 2019,211:1480-1490.
doi: 10.1016/j.jclepro.2018.11.159 |
[33] | Mi Kena, Zhuang Rulong, Liang Longwu, et al. Spatio-temporal evolution and characteristics of PM2.5 in the Yangtze River Delta based on real-time monitoring data during 2013-2016. Geographical Research, 2018,37(8):1641-1654. |
[ 宓科娜, 庄汝龙, 梁龙武, 等. 长三角PM2.5时空格局演变与特征: 基于2013—2016年实时监测数据. 地理研究, 2018,37(8):1641-1654.] | |
[34] | Guo Qingbin, Zhang Zhonghua. Spatial-temporal evolution of factors aggregating ability in urban agglomeration in the middle reaches of the Yangtze River. Acta Geographica Sinica, 2017,72(10):1746-1761. |
[ 郭庆宾, 张中华. 长江中游城市群要素集聚能力的时空演变. 地理学报, 2017,72(10):1746-1761.] | |
[35] |
Tobler W R. A computer movie simulating urban growth in the Detroit region. Economic Geography, 1970,46(Suppl.1):234-240.
doi: 10.2307/143141 |
[36] | Anselin L. GeoDa TM 0.9 User's Guide. Urbana: University of Illinois, 2003: 13-43. |
[37] |
Ord J K, Getis A. Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 1995,27(4):286-306.
doi: 10.1111/gean.1995.27.issue-4 |
[38] | Wang Geng, Li Sujuan, Ma Qifei. Spatial equilibrium and pattern evolution of ecological civilization construction efficiency in China. Acta Geographica Sinica, 2018,73(11):2198-2209. |
[ 王耕, 李素娟, 马奇飞. 中国生态文明建设效率空间均衡性及格局演变特征. 地理学报, 2018,73(11):2198-2209.] | |
[39] |
Arellano M, Bover O. Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 1995,68(1):29-51.
doi: 10.1016/0304-4076(94)01642-D |
[40] |
Blundell R, Bond S. Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 1998,87(1):115-143.
doi: 10.1016/S0304-4076(98)00009-8 |
[41] |
Donkelaar A V, Martin R V, Brauer M, et al. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environmental Health Perspectives, 2015,123(2):135-143.
doi: 10.1289/ehp.1408646 pmid: 25343779 |
[42] | Kang Hui, Zhu Bin, Wang Honglei, et al. Characterization and variation of organic carbon (OC) and elemental carbon (EC) in PM2.5 during the winter in the Yangtze River Delta Region, China. Environmental Science, 2018,39(3):961-971. |
[ 康晖, 朱彬, 王红磊, 等. 长三角典型站点冬季大气PM2.5中OC、EC污染特征. 环境科学, 2018,39(3):961-971.] | |
[43] | Wang Yanqiu, Wu Hao. Transformation and development of resource-based cities in northern Anhui under new normal. Journal of Tonghua Normal University, 2020,41(3):62-67. |
[ 王艳秋, 吴昊. 新常态下皖北地区资源型城市转型发展研究. 通化师范学院学报, 2020,41(3):62-67.] | |
[44] | Hao Jiming, Yin Weilun, Cen Kefa. Strategies and Technical Approaches for the Prevention and Control of Atmospheric PM2.5 in China. Beijing:Science Press, 2016: 14-26. |
[ 郝吉明, 尹伟伦, 岑可法. 中国大气PM25防治策略与技术途径. 北京: 科学出版社, 2016: 14-26.] | |
[45] | Chen Yao, Chen Yu. Analysis of China's industrial layout adjustment and industry transfer. Contemporary Economy & Management, 2011,33(10):38-47. |
[ 陈耀, 陈钰. 我国工业布局调整与产业转移分析. 当代经济管理, 2011,33(10):38-47.] | |
[46] |
Liu Q Q, Wang S J, Zhang W Z, et al. The effect of natural and anthropogenic factors on PM2.5: Empirical evidence from Chinese cities with different income levels. Science of the Total Environment, 2019,653:157-167.
doi: 10.1016/j.scitotenv.2018.10.367 |
[47] | Shao Shuai, Li Xin, Cao Jianhua, et al. China's economic policy choices for governing smog pollution based on spatial spillover effects. Economic Research Journal, 2016,51(9):73-88. |
[ 邵帅, 李欣, 曹建华, 等. 中国雾霾污染治理的经济政策选择: 基于空间溢出效应的视角. 经济研究, 2016,51(9):73-88.] | |
[48] | Ma Limei, Zhang Xiao. The spatial effect of China's haze pollution and the impact from economic change and energy structure. China Industrial Economics, 2014,32(4):19-31. |
[ 马丽梅, 张晓. 中国雾霾污染的空间效应及经济、能源结构影响. 中国工业经济, 2014,32(4):19-31.] | |
[49] |
Lin G, Fu J Y, Jiang D, et al. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. International Journal of Environmental Research and Public Health, 2013,11(1):173-186.
doi: 10.3390/ijerph110100173 |
[50] | Shao Shuai, Li Xin, Cao Jianhua. Urbanization promotion and haze pollution governance in China. Economic Research Journal, 2019,54(2):148-165. |
[ 邵帅, 李欣, 曹建华. 中国的城市化推进与雾霾治理. 经济研究, 2019,54(2):148-165.] | |
[51] |
Shahbaz M, Nasreen S, Abbas F, et al. Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries? Energy Economics, 2015,51:275-287.
doi: 10.1016/j.eneco.2015.06.014 |
[52] |
Lee J W. The contribution of foreign direct investment to clean energy use, carbon emissions and economic growth. Energy Policy, 2013,55:483-489.
doi: 10.1016/j.enpol.2012.12.039 |
[53] |
Tang L W, Li K, Jia P R. Impact of environmental regulations on environmental quality and public health in China: Empirical analysis with panel data approach. Sustainability, 2020,12(2):623. DOI: 10.3390/su12020623.
doi: 10.3390/su12020623 |
[54] |
Yuan B L, Xiang Q L. Environmental regulation, industrial innovation and green development of Chinese manufacturing: Based on an extended CDM model. Journal of Cleaner Production, 2018,176:895-908.
doi: 10.1016/j.jclepro.2017.12.034 |
[55] | Yan Yaxue, Qi Shaozhou. Time-space effect test on foreign direct investment and PM2.5 pollution at city level. China Population, Resources and Environment, 2017,27(4):68-77. |
[ 严雅雪, 齐绍洲. 外商直接投资对中国城市雾霾(PM2.5)污染的时空效应检验. 中国人口·资源与环境, 2017,27(4):68-77.] |
[1] | 王利, 吴良, 李言鹏, 张丹, 杨林生. 北极能源开发的地缘要素驱动机制[J]. 地理学报, 2021, 76(5): 1078-1089. |
[2] | 梁鑫源,李阳兵. 三峡库区规模农地时空变化特征及其驱动机制[J]. 地理学报, 2018, 73(9): 1630-1646. |
[3] | 张英男,龙花楼,戈大专,屠爽爽,曲艺. 黄淮海平原耕地功能演变的时空特征及其驱动机制[J]. 地理学报, 2018, 73(3): 518-534. |
[4] | 李智,张小林,李红波,袁源. 江苏典型县域城乡聚落规模体系的演化路径及驱动机制[J]. 地理学报, 2018, 73(12): 2392-2408. |
[5] | 樊咏阳, 张为, 韩剑桥, 余梦清. 三峡水库下游弯曲河型演变规律调整及其驱动机制[J]. 地理学报, 2017, 72(3): 420-431. |
[6] | 葛莹, 蒲英霞, 赵慧慧, 李云婷. 基于边际K函数的长三角地区城市群经济空间划分[J]. 地理学报, 2015, 70(4): 528-538. |
[7] | 陈嘉, 韦素琼, 陈松林. 1991年来台商在大陆直接投资区位选择及驱动机制[J]. 地理学报, 2014, 69(6): 838-849. |
[8] | 黄震方, 俞肇元, 黄振林, 祝晔, 徐波, 袁林旺. 主题型文化旅游区的阶段性演进及其驱动机制——以无锡灵山景区为例[J]. 地理学报, 2011, 66(6): 831-841. |
[9] | 周国华, 贺艳华, 唐承丽, 于涛, 肖国珍. 中国农村聚居演变的驱动机制及态势分析[J]. 地理学报, 2011, 66(4): 515-524. |
[10] | 宫兆宁, 张翼然, 宫辉力, 赵文吉. 北京湿地景观格局演变特征与驱动机制分析[J]. 地理学报, 2011, 66(1): 77-88. |
[11] | 段学军, 虞孝感, Josef Nipper. 从极化区的功能探讨长江三角洲的扩展范围[J]. 地理学报, 2009, 64(2): 211-220. |
[12] | 杨桂山. 土地利用/覆被变化与区域经济发展——长江三角洲近50年耕地数量变化研究的启示[J]. 地理学报, 2004, 59(7s): 41-46. |
[13] | 王鸿祯, 顾家裕. 介绍《长江三角洲地区风暴沉积研究》专著[J]. 地理学报, 1998, 53(1): 86-86. |