地理学报 ›› 2021, Vol. 76 ›› Issue (1): 167-177.doi: 10.11821/dlxb202101013
收稿日期:
2019-04-02
修回日期:
2020-10-07
出版日期:
2021-01-25
发布日期:
2021-03-25
作者简介:
崔耀平(1984-), 男, 河南周口人, 教授, 博导, 研究方向为自然资源学。E-mail: 基金资助:
CUI Yaoping1,2(), LI Nan1,2, FU Yiming2, CHEN Liangyu2
Received:
2019-04-02
Revised:
2020-10-07
Published:
2021-01-25
Online:
2021-03-25
Supported by:
摘要:
作为主要的气候强迫因子,CO2与人类活动密切相关,但很多研究往往忽视了陆地生态系统碳汇对人为排放CO2增温的消减作用。俄罗斯、加拿大、中国和美国是世界上地域面积最大、且社会经济处于不同发展阶段的4个国家,将短时期内CO2排放所引起的辐射强迫进行量化分析,对于评估人为和自然因素对气候的影响非常重要。本文基于CO2同化数据,利用“碳—气候”参数化方案,在分析人为碳排放及其气候效应的同时,考虑陆地生态系统碳汇的气候效应,进而得到4个国家的全球辐射强迫。结果显示:① 2000—2016年,4个国家人为排放的CO2均呈明显增加趋势(0.125 Pg C a -1),但陆地生态系统的碳汇作用也不断增强(0.003 Pg C a -1);其中,中美两国总的人为碳排放占了4个国家的87.19%,而俄罗斯陆地生态系统的吸收碳能力最强,总量达14.69 Pg C。② 截至2016年,陆地生态系统的降温效应达-0.013 W m -2,可消减人为碳排放增温效应的45.06%。充分说明若不考虑陆地生态系统,将会明显高估人为碳排放的增温效应。③ 整体上,相对于2000年和工业革命前的CO2浓度水平,4个国家总的人为碳排放分别贡献了0.32 W m -2和0.42 W m -2的全球辐射强迫。本文还进一步探讨了温度与辐射强迫的线性关系,相对于单一的人为或者自然因素而言,综合两者的辐射强迫,与相应时段的气温变化可解释度最高,达30.3%。
崔耀平, 李楠, 付一鸣, 陈良雨. 中美俄加陆域碳汇对人为增温的消减贡献[J]. 地理学报, 2021, 76(1): 167-177.
CUI Yaoping, LI Nan, FU Yiming, CHEN Liangyu. Contribution of terrestrial carbon sink to future warming in China, the United States, Russia and Canada[J]. Acta Geographica Sinica, 2021, 76(1): 167-177.
[1] | IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013. |
[2] | National Oceanic and Atmospheric Administration Earth System Research Laboratory. NOAA's Annual Greenhouse Gas Index. http://www.esrl.noaa.gov/gmd/aggi/. |
[3] | Eby M, Weaver A J, Alexander K, et al. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Climate of the Past, 2013,9(3):1111-1140. |
[4] | Clark P U, Shakun J D, Marcott S A, et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change, 2016,6(4):360-369. |
[5] | Fang Jingyun, et al. Carbon Emissions from China and the World: Some Views on Relationship between Carbon Emissions and Socio-economic Development. Beijing: Science Press, 2018. |
[ 方精云, 等. 中国及全球碳排放—兼论碳排放与社会发展的关系. 北京: 科学出版社. 2018.] | |
[6] | Quéré C L, Moriarty R, Andrew R M, et al. Global Carbon Budget 2015. Earth System Science Data, 2015,7(2):349-396. |
[7] |
Martin H, Markus R. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 2008,451(7176):289-292.
pmid: 18202646 |
[8] | Pachauri R K, Reisinger A. Climate Change 2007: Synthesis Report. Geneva: IPCC, 2007. |
[9] | Tang X Y, Cui Y P, Li N, et al. Human activities enhance radiation forcing through surface albedo associated with vegetation in Beijing. Remote Sensing, 2020,12(5):837. DOI: 10.3390/rs12050837. |
[10] | Kirschbaum M U, Saggar S, Tate K R, et al. Quantifying the climate-change consequences of shifting land use between forest and agriculture. Science of the Total Environment, 2013,465(6):314-324. |
[11] |
Anderson-Teixeira K J, Snyder P K, Twine T E, et al. Climate-regulation services of natural and agricultural ecoregions of the American. Nature Climate Change, 2012,2(3):177-181.
doi: 10.1038/nclimate1346 |
[12] | Archer D, Eby M, Brovkin V, et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth & Planetary Sciences, 2009,37(1):117-134. |
[13] | Landry J S, Matthews H D. Non-deforestation fire vs. fossil fuel combustion: The source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences, 2016,13(7):2137-2149. |
[14] | Joos F, Roth R, Fuglestvedt J S, et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 2013,13(5):2793-2825. |
[15] |
Feldman D R, Collins W D, Gero P J, et al. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature, 2015,519(7543):339-343.
pmid: 25731165 |
[16] | Boden T A, Marland G, Andres R G. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 2017. DOI: 10.3334/CDIAC/00001_V2017. |
[17] | Jideofor A. China's efforts in sustainable development: A test case for nigeria's environmental sustainability goal. Modern Economy, 2017,8(5):770-790. |
[18] | Gregg J S, Andres R J, Marland G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophysical Research Letters, 2008,35(8):135-157. |
[19] | Rüstemğlu H, Andrés A R. Determinants of CO2 emissions in Brazil and Russia between 1992 and 2011: A decomposition analysis. Environmental Science & Policy, 2016,58:95-106. |
[20] | World Bank. Global Economic Propects, June 2018: The Turning of the Tide? Washington D C: World bank, 2018. |
[21] | World Bank. World Development Indicators. https://databank.worldbank.org/data/reports.aspx?source=2&series=NY.GDP.MKTP.KD.ZG&country=#, 2017-01. |
[22] | Myhre G, Highwood E J, Shine K P, et al. New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 1998,25(14):2715-2718. |
[23] | Li Nan. Changes of major greenhouse gases in China and their contributions to global radiative forcing[D]. Kaifeng: Henan University, 2020. |
[ 李楠. 中国主要温室气体变化及其对全球辐射强迫的贡献研究[D]. 开封: 河南大学, 2020.] | |
[24] |
Lee D S, Pitari G, Grewe V, et al. Transport impacts on atmosphere and climate: Aviation. Atmospheric Environment, 2010,44(37):4678-4734.
doi: 10.1016/j.atmosenv.2009.06.005 pmid: 32288556 |
[25] | IPCC. Climate Change 2007: The Physical Science Basis. Cambridge and New York: Cambridge University Press, 2007. |
[26] | Sausen R, Schumann U. Estimates of the climate response to aircraft CO2 and NOx emissions scenarios. Climatic Change, 2000,44(1/2):27-58. |
[27] | Tian H Q, Xu X F, Lu C Q, et al. Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming. Journal of Geophysical Research, 2011,116(G02011). DOI: 10.1029/2010JG001393. |
[28] | Xu X F, Tian H Q, Zhang C, et al. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences, 2010,7(11):3637-3655. |
[29] | Mendoza V M, Garduno R, Villanueva E E, Mendoza Blanca, Mexico's contribution to global radiative forcing by major anthropogenic greenhouse gases: CO2, CH4, and N2O. Atmosfera, 2015,28(3):219-227. |
[30] | Montenegro A, Eby M, Mu Q, et al. The net carbon drawdown of small scale afforestation from satellite observations. Global & Planetary Change, 2009,69(4):195-204. |
[31] |
Schwaab J, Bavay M, Davin E, et al. Carbon storage versus albedo change: Radiative forcing of forest expansion in temperate mountainous regions of Switzerland. Biogeosciences, 2015,12(2):467-487.
doi: 10.5194/bg-12-467-2015 |
[32] |
Feddema J J, Oleson K W, Bonan G B, et al. The importance of land-cover change in simulating future climates. Science, 2005,310(5754):1674-1678.
doi: 10.1126/science.1118160 pmid: 16339443 |
[33] |
Davin E L, de Noblet-ducoudré N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 2010,23(1):97-112.
doi: 10.1175/2009JCLI3102.1 |
[34] | Kondo Y, Matsui H, Moteki N, et al. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, 2011,116(D08204). DOI: 10.1029/2010JG001393. |
[35] | Clarke D W, Boyle J F, Plater A J. Particle-size evidence of barrier estuary regime as a new proxy for ENSO climate variability. Earth Surface Processes and Landforms, 2017,42(10):1520-1534. |
[36] |
Roe G H, Baker M B. Why is climate sensitivity so unpredictable? Science, 2007,318(5850):629-632.
doi: 10.1126/science.1144735 pmid: 17962560 |
[37] | Rohling E J, Marino G, Foster G L, et al. Comparing climate sensitivity, past and present. Annual Review of Marine Science, 2018,10(1):261-288. |
[38] | Loehle C. A minimal model for estimating climate sensitivity. Ecological Modelling, 2014,276:80-84. |
[39] |
Li N, Cui Y P, Fu Y M, et al. Contribution of anthropogenic CO2 in China to global radiative forcing and its offset by the ecosystem during 2000-2015. Annals of the New York Academy of Sciences, DOI: 10.1111/nyas.14505.
doi: 10.1111/nyas.14546 pmid: 33340110 |
[40] | Cui Y P, Meadows M E, Li N, et al. Land cover change intensifies actual and potential radiative forcing through CO2 in south and southeast Asia from 1992 to 2015. International Journal of Environmental Research and Public Health, 2019,16(14):2460-2472. |
[41] | Houghton R A, House J I, Pongratz J, et al. Carbon emissions from land use and land-cover change. Biogeosciences, 2012,9(12):5125-5142. |
[42] |
Loboda T V, Chen D. Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia. Global Change Biology, 2017,23(1):138-153.
doi: 10.1111/gcb.13349 pmid: 27167728 |
[43] | Cao Mingkui, Li Kerang. perspective on terrestrial ecosystem-climate interaction. Advance in Earth Sciences, 2000,15(4):446-452. |
[ 曹明奎, 李克让. 陆地生态系统与气候相互作用的研究进展. 地球科学进展, 2000,15(4):446-452.] | |
[44] | Fang Jingyun, Zhu Jiangling, Shi Yue. The responses of ecosystems to global warming. Chinese Science Bulletin, 2018,63(2):136-140. |
[ 方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应. 科学通报, 2018,63(2):136-140.] | |
[45] |
Cui Y P, Xiao X M, Zhang Y, et al. Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Scientific Reports, 2017,7(1):14963. DOI: 10.1038/s41598-017-13783-5.
doi: 10.1038/s41598-017-13783-5 pmid: 29097731 |
[46] | Dass P, Rawlins M A, Kimball J S, et al. Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia. Biogeosciences, 2016,13(1):45-62. |
[47] |
Zhang Y, Xiao X M, Wu X C, et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Scientific Data, 2017,4:170165. DOI: 10.1038/sdata.2017.165.
pmid: 29064464 |
[48] |
Lim C, Kafatos M, Megonigal P. Correlation between atmospheric CO2 concentration and vegetation greenness in North America: CO2 fertilization effect. Climate Research, 2004,28(1):11-22.
doi: 10.3354/cr028011 |
[49] | Lovenduski N S, Gruber N, Doney S C. Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Climate Research, Global Biogeochemical Cycles, 2008,22(3):GB3016. DOI: 10.1029/2007GB003139. |
[50] | Landschützer P, Gruber N, Bakker D C E, et al. Recent variability of the global ocean carbon sink. Global Biogeochemical Cycles, 2014,28(9):927-949. |
[1] | 吴祥文, 臧淑英, 马大龙, 任建华, 李昊, 赵光影. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331. |
[2] | 徐丽, 于贵瑞, 何念鹏. 1980s-2010s中国陆地生态系统土壤碳储量的变化[J]. 地理学报, 2018, 73(11): 2150-2167. |
[3] | 翟俊, 刘荣高, 刘纪远, 赵国松. 1990-2010年中国土地覆被变化引起反照率改变的辐射强迫[J]. 地理学报, 2013, 68(7): 875-885. |
[4] | 田汉勤, 刘明亮, 张弛, 任巍, 徐小锋, 陈广生, 吕超群, 陶波. 全球变化与陆地系统综合集成模拟——新一代陆地生态系统动态模型(DLEM)[J]. 地理学报, 2010, 65(9): 1027-1047. |
[5] | 张志强, 曲建升, 曾静静. 温室气体排放评价指标及其定量分析[J]. 地理学报, 2008, 63(7): 693-702. |
[6] | 王勤学,渡边正孝,欧阳竹,李彦,李英年,赵新全,王克林. 不同类型生态系统水热碳通量的监测与研究[J]. 地理学报, 2004, 59(1): 13-24. |
[7] | 朱连奇,许叔明,陈沛云. 草地改良对陆地生态系统养分的影响——以福建省建瓯市牛坑龙草地生态系统试验站为例[J]. 地理学报, 2003, 58(5): 703-711. |
[8] | 陶波,李克让,邵雪梅,曹明奎. 中国陆地净初级生产力时空特征模拟[J]. 地理学报, 2003, 58(3): 372-380. |
[9] | 田汉勤. 陆地生物圈动态模式:生态系统模拟的发展趋势[J]. 地理学报, 2002, 57(4): 379-388. |
[10] | 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379-389. |
[11] | 耿远波, 章申, 董云社, 孟维奇, 齐玉春, 陈佐忠, 王艳芬. 草原土壤的碳氮含量及其与温室气体通量的相关性[J]. 地理学报, 2001, 56(1): 44-53. |
[12] | 董云社, 彭公炳, 李俊. 温带森林土壤排放CO2、CH4、N2O时空特征[J]. 地理学报, 1996, 51(s1): 120-128. |