地理学报 ›› 2020, Vol. 75 ›› Issue (5): 989-1007.doi: 10.11821/dlxb202005008
李双双, 汪成博, 延军平, 刘宪锋
收稿日期:
2019-03-18
修回日期:
2020-02-18
出版日期:
2020-05-25
发布日期:
2020-07-25
作者简介:
李双双(1988-), 男, 陕西潼关人, 博士, 讲师, 中国地理学会会员(S110011553M), 研究方向为全球变化与区域灾害防治。E-mail: lss40609010@126.com
基金资助:
LI Shuangshuang, WANG Chengbo, YAN Junping, LIU Xianfeng
Received:
2019-03-18
Revised:
2020-02-18
Published:
2020-05-25
Online:
2020-07-25
Supported by:
摘要:
基于72个气象站点1970—2017年逐日降水和气温数据,面向极端降水过程,对秦岭南北4种极端降水类型(偏前型、偏后型、均衡型和单日型)时空变化特征进行分析,进而探讨不同分区、不同类型极端降水与区域增温的响应关系。结果表明:① 从长期气候角度分析,秦岭南北降水格局稳定,3个分区降水变化空间响应具有一致性,共同表现出“降水以波动为主,降水量近期增加,降水日数下降,整体呈现极端化”的特征;② 在极端降水主导类型上,以累计降水量为判断标准,秦岭以北为均衡型主导,兼有偏后型;秦岭南坡类型组合关系较弱,为单一均衡型,汉江谷地西侧为“均衡型+偏后型”,东侧为“均衡型+偏前型”组合;以累积降水频次为判断标准,秦岭南北主导类型为偏前型,其次是偏后型,汉江谷地“偏前型+偏后型”组合形态更突出;③ 秦岭南北极端降水与区域变暖关系密切。当气温升高时,持续性极端降水呈下降趋势,单日型极端降水呈增加趋势。其中,秦岭以北偏前型和均衡型极端降水在下降,秦岭南坡响应密切的为偏后型,汉江谷地为均衡型和偏后型;④ 面向极端降水事件过程,将极端降水事件细化,可有效验证极端降水对气候变暖响应的结论,对未来研究方法完善和研究思路设计具有启示性。
李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007.
LI Shuangshuang, WANG Chengbo, YAN Junping, LIU Xianfeng. Variability of the event-based extreme precipitation in the south and north Qinling Mountains[J]. Acta Geographica Sinica, 2020, 75(5): 989-1007.
表1
秦岭南北降水空间插值交叉验证结果
类型 | 插值要素 | 有效参数 (Signal) | 剩余自由度 (Error) | 信噪比 (SNR) | 误差估计均方根 (RTMSE) | 噪音估计标准差 (RTVAR) |
---|---|---|---|---|---|---|
降水量 平均态 | 1970—2000年 | 21.0 | 50.0 | 0.42 | 25.9 | 46.2 |
1980—2010年 | 22.7 | 48.3 | 0.45 | 26.2 | 45.6 | |
1990—2017年 | 18.1 | 52.9 | 0.36 | 24.0 | 47.6 | |
2008—2017年 | 18.9 | 52.1 | 0.38 | 28.1 | 54.5 | |
极端降水量平均态 | 1970—2000年 | 16.0 | 55.0 | 0.32 | 18.7 | 39.4 |
1980—2010年 | 18.8 | 52.2 | 0.38 | 19.5 | 38.0 | |
1990—2017年 | 17.4 | 53.6 | 0.35 | 19.8 | 40.0 | |
2008—2017年 | 14.9 | 56.1 | 0.30 | 23.9 | 52.1 | |
累积极端 降水频次 | 偏前型 | 11.2 | 59.8 | 0.22 | 0.0072 | 0.0182 |
偏后型 | 13.7 | 57.3 | 0.27 | 0.0061 | 0.0140 | |
均衡型 | 9.4 | 61.6 | 0.19 | 0.0054 | 0.0149 | |
单日型 | 11.1 | 59.9 | 0.22 | 0.0069 | 0.0174 | |
累积极端 降水量 | 偏前型 | 8.3 | 62.7 | 0.17 | 0.0073 | 0.0214 |
偏后型 | 12.7 | 58.3 | 0.25 | 0.0092 | 0.0217 | |
均衡型 | 10.6 | 60.4 | 0.21 | 0.0105 | 0.0272 | |
单日型 | 11.6 | 59.4 | 0.23 | 0.0041 | 0.0102 |
表2
秦岭南北典型等降水量线控制面积变化(%)
降水量 (mm) | 1970—2000年 | 1980—2010年 | 1990—2017年 | 2008—2017年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
面积占比 | 变化率 | 面积占比 | 变化率 | 面积占比 | 变化率 | 面积占比 | 变化率 | ||||
< 600 | 10.1 | - | 9.9 | -0.2 | 11.3 | 1.4 | 9.1 | -2.2 | |||
600~700 | 13.0 | - | 11.9 | -1.1 | 15.7 | 3.8 | 11.8 | -3.9 | |||
700~800 | 29.9 | - | 29.9 | 0.0 | 29.6 | -0.3 | 18.4 | -11.2 | |||
800~900 | 27.9 | - | 29.8 | 1.9 | 26.0 | -3.8 | 32.1 | 6.1 | |||
900~1000 | 7.6 | - | 7.3 | -0.3 | 6.8 | -0.4 | 13.5 | 6.6 | |||
≥ 1000 | 11.6 | - | 11.3 | -0.3 | 10.6 | -0.7 | 15.2 | 4.6 | |||
极端降水量 (mm) | 1970—2000年 | 1980—2010年 | 1990—2017年 | 2008—2017年 | |||||||
面积占比 | 变化率 | 面积占比 | 变化率 | 面积占比 | 变化率 | 面积占比 | 变化率 | ||||
<400 | 8.3 | - | 7.4 | -0.9 | 9.0 | 1.6 | 5.9 | -3.1 | |||
400~500 | 13.4 | - | 11.6 | -1.8 | 15.6 | 4.0 | 15.0 | -0.6 | |||
500~600 | 38.4 | - | 37.3 | -1.2 | 42.8 | 5.6 | 23.4 | -19.4 | |||
600~700 | 24.2 | - | 28.2 | 4.0 | 18.8 | -9.4 | 34.2 | 15.4 | |||
700~800 | 7.6 | - | 7.3 | -0.3 | 6.8 | -0.5 | 10.8 | 4.0 | |||
≥ 800 | 8.1 | - | 8.3 | 0.1 | 7.0 | -1.3 | 10.7 | 3.7 |
表3
秦岭南北4种极端降水事件与气温变化相关性
类型 | 指标 | 秦岭以北 | 秦岭南坡 | 汉江谷地 | |||||
---|---|---|---|---|---|---|---|---|---|
相关系数 | 显著性 | 相关系数 | 显著性 | 相关系数 | 显著性 | ||||
偏前型 | 极端降水量 | -0.26 | 0.92 | -0.27 | 0.93 | -0.32 | 0.97 | ||
极端降水日数 | -0.47 | 1.00 | -0.46 | 1.00 | -0.57 | 1.00 | |||
极端降水频次 | -0.26 | 0.93 | -0.21 | 0.84 | -0.36 | 0.99 | |||
偏后型 | 极端降水量 | -0.16 | 0.72 | -0.10 | 0.49 | -0.28 | 0.94 | ||
极端降水日数 | -0.28 | 0.95 | -0.33 | 0.98 | -0.43 | 1.00 | |||
极端降水频次 | -0.12 | 0.57 | 0.11 | 0.53 | -0.06 | 0.32 | |||
均衡型 | 极端降水量 | -0.26 | 0.93 | -0.13 | 0.63 | -0.25 | 0.91 | ||
极端降水日数 | -0.34 | 0.98 | -0.23 | 0.89 | -0.37 | 0.99 | |||
极端降水频次 | -0.11 | 0.55 | 0.04 | 0.20 | -0.15 | 0.71 | |||
单日型 | 极端降水量 | 0.41 | 1.00 | 0.45 | 1.00 | 0.52 | 1.00 | ||
极端降水日数 | 0.36 | 0.99 | 0.43 | 1.00 | 0.54 | 1.00 | |||
极端降水频次 | 0.36 | 0.99 | 0.43 | 1.00 | 0.54 | 1.00 |
[1] | Lenderink G, Fowler H J . Hydroclimate: Understanding rainfall extremes. Nature Climate Change, 2017,7(6):391-392. |
[2] | Utsumi N, Seto S, Kanae S , et al. Does higher surface temperature intensify extreme precipitation? Geophysical Research Letters, 2011,38(16):239-255. |
[3] | Lenderink G, Meijgaard E V . Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geoscience, 2008,1(8):511-514. |
[4] | Kadari A, Mekala S R, Wagner N , et al. Human contribution to more-intense precipitation extremes. Nature, 2011,470(7334):378-381. |
[5] | Prein A F, Rasmussen R M, Ikeda K , et al. The future intensification of hourly precipitation extremes. Nature Climate Change, 2017,7(1):48-52. |
[6] | Ban N, Schmidli J, Schär C . Heavy precipitation in a changing climate: Does short‐term summer precipitation increase faster? Geophysical Research Letters, 2015,42(4):1165-1172. |
[7] | Jiao Sheng, Han Jingyan, Zhou Min , et al. Low-impact urban development mode based on waterlogging security pattern. Geographical Research, 2018,37(9):1704-1713. |
[ 焦胜, 韩静艳, 周敏 , 等. 基于雨洪安全格局的城市低影响开发模式研究. 地理研究, 2018,37(9):1704-1713.] | |
[8] | Chen Xiuhong, Liu Bingjun, Chen Gang . Effects of urbanization on precipitation characteristics. Journal of Natural Resources, 2017,32(9):1591-1601. |
[ 陈秀洪, 刘丙军, 陈刚 . 城市化建设对降水特征的影响. 自然资源学报, 2017,32(9):1591-1601.] | |
[9] | Li Chunlin, Liu Miao, Hu Yuanman , et al. Effects of urbanization on direct runoff characteristics in urban functional zones. Science of the Total Environment, 2018,643:301-311. |
[10] | Rosenzweig C, Solecki W . Action pathways for transforming cities. Nature Climate Change, 2018,8(9):756-759. |
[11] | Bai X M, Dawson R J, Ürge-Vorsatz D , et al. Six research priorities for cities and climate change. Nature, 2018,555(7694):23-25. |
[12] | Li Shuangshuang, Lu Jiayu, Yan Junping , et al. Spatiotemporal variability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary. Acta Geographica Sinica, 2018,73(1):13-24. |
[ 李双双, 芦佳玉, 延军平 , 等. 1970—2015年秦岭南北气温时空变化及其气候分界意义. 地理学报, 2018,73(1):13-24.] | |
[13] | Wang Zhao, Luo Hui, Li Yali , et al. Effects of urbanization on temperatures over the Qinling Mountains in the past 50 years. Journal of Applied Meteorological Science. 2016,27(1):85-94. |
[ 王钊, 罗慧, 李亚丽 , 等. 近50年秦岭南北不均匀增温及对城市化响应. 应用气象学报, 2016,27(1):85-94.] | |
[14] | Bai Hongying, Ma Xinping, Gao Xiang , et al. Variations in January temperature and 0 ℃ isothermal curve in Qinling mountains based on DEM. Acta Geographica Sinica, 2012,67(11):1443-1450. |
[ 白红英, 马新萍, 高翔 , 等. 基于DEM的秦岭山地1月气温及0 ℃等温线变化. 地理学报, 2012,67(11):1443-1450.] | |
[15] | Ma Beibei, Li Hailing, Wei Yehua , et al. Spatial structure and mechanism of urban poverty in Xi'an city. Acta Geographica Sinica, 2018,73(6):1018-1032. |
[ 马蓓蓓, 李海玲, 魏也华 , 等. 西安市贫困空间结构特征与发生机理. 地理学报, 2018,73(6):1018-1032.] | |
[16] | He Yanbing, Huang Xiaojun, Zhai Lingxin , et al. Assessment and influencing factors of social vulnerability to rapid urbanization in urban fringe: A case study of Xi'an. Acta Geographica Sinica, 2016,71(8):1315-1328. |
[ 何艳冰, 黄晓军, 翟令鑫 , 等. 西安快速城市化边缘区社会脆弱性评价与影响因素. 地理学报, 2016,71(8):1315-1328.] | |
[17] | Yang Xiaonan, Li Jing, Qin Keyu , et al. Trade-offs between ecosystem services in Guanzhong-Tianshui Economic Region. Acta Geographica Sinica, 2015,70(11):1762-1773. |
[ 杨晓楠, 李晶, 秦克玉 , 等. 关中—天水经济区生态系统服务的权衡关系. 地理学报, 2015,70(11):1762-1773.] | |
[18] | Xi'an Bureau of Statistics. Statistical Bulletin of Xi'an on National Economic and Social Development (2018). , 2019-03-17. |
[ 西安市统计局. 西安市2018年国民经济和社会发展统计公报. , 2019-03-17.] | |
[19] | Liu Bin, Mao Yongzheng . Study on site selection and general layout of Hanjiang-to-Weihe River Valley water diversion project. Water Resources and Hydropower Engineering, 2017,48(8):31-35. |
[ 刘斌, 毛拥政 . 引汉济渭工程选址及总体布置研究. 水利水电技术, 2017,48(8):31-35.] | |
[20] | Wang Zhijie, Su Yuan . Analysis of eco-environmental vulnerability characteristics of Hanzhong city, near the water source midway along the route of the South-to-North Water Transfer Project, China. Acta Ecologica Sinica, 2018,38(2):432-442. |
[ 王志杰, 苏嫄 . 南水北调中线汉中市水源地生态脆弱性评价与特征分析. 生态学报, 2018,38(2):432-442.] | |
[21] | White R H, Battisti D S, Skok G . Tracking precipitation events in time and space in gridded observational data. Geophysical Research Letters, 2017,44(16):8637-8646. |
[22] | Wang G, Wang D, Trenberth K E , et al. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nature Climate Change, 2017,7(4):268-274. |
[23] | Ali H, Mishra V . Increase in subdaily precipitation extremes in India under 1.5 and 2.0 °C warming worlds. Geophysical Research Letters, 2018,45(14):6972-6982. |
[24] | Fischer E M, Knutti R . Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, 2016,6(11):986-991. |
[25] | Zhang X, Zwiers F W, Li G , et al. Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 2017,10(4):255-259. |
[26] | Lu E, Zhao W, Gong L , et al. Determining starting time and duration of extreme precipitation events based on intensity. Climate Research, 2015,63(1):31-41. |
[27] | Kendon E J, Roberts N M, Fowler H J , et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Climate Change, 2014,4(7):570-576. |
[28] | Dwyer J G, O'Gorman P A . Changing duration and spatial extent of midlatitude precipitation extremes across different climates. Geophysical Research Letters, 2017,44(11):5863-5871. |
[29] | Wu X, Guo S, Yin J , et al. On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels. Journal of Hydrology, 2018,562:305-317. |
[30] | Meng Qingren . Origin of the Qinling Mountains. Science China Earth Sciences, 2017,47(2):412-420. |
[ 孟庆任 . 秦岭的由来. 中国科学: 地球科学, 2017,47(2):412-420.] | |
[31] | Liu Yansui . Structural analysis and optimal use of land types in mountainous regions: Taking Qinling Mountains of Shaanxi province as an example. Acta Geographica Sinica, 2001,56(4):425-436. |
[ 刘彦随 . 山地土地类型的结构分析与优化利用: 以陕西秦岭山地为例. 地理学报, 2001,56(4):425-436.] | |
[32] | Yan Junping, Zheng Yu . A comparative study on environmental change response over the northern and the southern regions of the Qinling Mountains. Geographical Research, 2001,20(5):576-582. |
[ 延军平, 郑宇 . 秦岭南北地区环境变化响应比较研究. 地理研究, 2001,20(5):576-582.] | |
[33] | Shaanxi Meteorological Administration. History of Meteorological Stations in Shaanxi Province. Beijing: China Meteorological Press, 2012. |
[ 陕西省气象局. 陕西省基层气象台站简史. 北京: 气象出版社, 2012.] | |
[34] | Sen P K . Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 1968,63(324):1379-1389. |
[35] | Hutchinson M F, McKenney D W, Lawrence K, , et al. Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961-2003. Journal of Applied Meteorology and Climatology, 2009,48(4):725-741. |
[36] | Hutchinson M F . ANUSPLIN Version 4.3 User Guide. Canberra: The Australia National University, Center for Resource and Environment Studies, 2004. |
[37] | Ma Zhuguo, Fu Congbin, Yang Qing , et al. Drying trend in northern China and its shift during 1951-2016. Chinese Journal of Atmospheric Science, 2018,42(4):951-961. |
[ 马柱国, 符淙斌, 杨庆 , 等. 关于我国北方干旱化及其转折性变化. 大气科学, 2018,42(4):951-961.] | |
[38] | Wen Kegang, Zhai You'an . Chinese Meteorological Disaster Dictionary (Shaanxi). Beijing: China Meteorological Press, 2005. |
[ 温克刚, 翟佑安 . 中国气象灾害大典(陕西卷). 北京: 气象出版社, 2005.] | |
[39] | Du Qinqin, Zhang Mingjun, Wang Shengjie , et al. Changes in air temperature of China in response to global warming hiatus. Acta Geographica Sinica, 2018,73(9):1748-1764. |
[ 杜勤勤, 张明军, 王圣杰 , 等. 中国气温变化对全球变暖停滞的响应. 地理学报, 2018,73(9):1748-1764.] | |
[40] | Mitchell D, James R, Forster P M , et al. Realizing the impacts of a 1.5 °C warmer world. Nature Climate Change, 2016,6(8):735-737. |
[41] | Chen H P, Sun J Q . Increased population exposure to extreme droughts in China due to 0.5 °C of additional warming. Environmental Research Letters, 2019,14(6):64011-64020. |
[42] | Zhang W X, Zhou T J, Zou L W , et al. Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nature Communications, 2018,9(1):3153-3161. |
[43] | Li W, Jiang Z H, Zhang X B , et al. Additional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levels. Science Bulletin, 2018,63(4):228-234. |
[44] | Li J, Wang B . Predictability of summer extreme precipitation days over eastern China. Climate Dynamics, 2018,51(11-12):4543-4554. |
[45] | Lu Fuzhi, Lu Huayu . A high-resolution grid dataset of air temperature and precipitation for Qinling-Daba Mountains in central China and its implications for regional climate. Acta Geographica Sinica, 2019,74(5):875-888. |
[ 陆福志, 鹿化煜 . 秦岭—大巴山高分辨率气温和降水格点数据集的建立及其对区域气候的指示. 地理学报, 2019,74(5):875-888.] | |
[46] | Zhao Fang, Zhang Baiping, Zhu Lianqi , et al. Spectra structures of altitudinal belts and their significance for determining the boundary between warm temperate and subtropical zones in the Qinling-Daba Mountains. Acta Geographica Sinica, 2019,74(5):889-901. |
[ 赵芳, 张百平, 朱连奇 , 等. 秦巴山地垂直带谱结构的空间分异与暖温带—亚热带界线问题. 地理学报, 2019,74(5):889-901.] | |
[47] |
Zhang Baiping . Ten major scientific issues concerning the study of China's north-south transitional zone. Progress in Geography, 2019,38(3):305-311.
doi: 10.18306/dlkxjz.2019.03.001 |
[ 张百平 . 中国南北过渡带研究的十大科学问题. 地理科学进展, 2019,38(3):305-311.]
doi: 10.18306/dlkxjz.2019.03.001 |
|
[48] |
Ding Yihui, Si Dong, Liu Yanju , et al. On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese Journal of Atmospheric Sciences, 2018,42(3):533-558.
doi: 10.3878/j.issn.1006-9895.1712.17261 |
[ 丁一汇, 司东, 柳艳菊 , 等. 论东亚夏季风的特征、驱动力与年代际变化. 大气科学, 2018,42(3):533-558.]
doi: 10.3878/j.issn.1006-9895.1712.17261 |
|
[49] | Zhang Renhe, Min Qinghua, Su Jingzhi . Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Science China Earth Sciences, 2017,47(5):544-553. |
[ 张人禾, 闵庆烨, 苏京志 . 厄尔尼诺对东亚大气环流和中国降水年际变异的影响: 西北太平洋异常反气旋的作用. 中国科学: 地球科学, 2017,47(5):544-553.] | |
[50] | Zscheischler J, Westra S, Hurk B J J M, et al. Future climate risk from compound events. Nature Climate Change, 2018,8(1):469-477. |
[51] | Shi Peijun, Lv Lili, Wang Ming , et al. Disaster system: Disaster cluster, disaster chain and disaster compound. Journal of Natural Disasters, 2014,23(6):1-12. |
[ 史培军, 吕丽莉, 汪明 , 等. 灾害系统: 灾害群, 灾害链, 灾害遭遇. 自然灾害学报 2014,23(6):1-12.] | |
[52] | Li Shuangshuang, Yang Saini, Liu Xianfeng . Spatiotemporal network modeling in concurrent heat waves and droughts in the Beijing-Tianjin-Hebei metropolitan region, China. Geographical Research, 2017,36(8):1415-1427. |
[ 李双双, 杨赛霓, 刘宪锋 . 面向非过程的多灾种时空网络建模: 以京津冀地区干旱热浪耦合为例. 地理研究, 2017,36(8):1415-1427.] | |
[53] | Chuang J S, Rivoire O, Leibler S . Simpson's paradox in a synthetic microbial system. Science, 2009,323(5911):272-275. |
[1] | 王可逸, 刘晓宏, 曾小敏, 徐国保, 张凌楠, 李春越. 树轮稳定氮同位素记录的进展与展望[J]. 地理学报, 2021, 76(5): 1193-1205. |
[2] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[3] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[4] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[5] | 叶玉瑶, 王长建, 张虹鸥, 杨骥, 刘郑倩, 吴康敏, 邓应彬. 基于人口流动的广东省COVID-19疫情风险时空分析[J]. 地理学报, 2020, 75(11): 2521-2534. |
[6] | 萧凌波, 闫军辉. 基于地方志的1736-1911年华北秋粮丰歉指数序列重建及其与气候变化的关系[J]. 地理学报, 2019, 74(9): 1777-1788. |
[7] | 李双双, 延军平, 武亚群, 汪成博. 秦岭—淮河南北供暖格局变化及其影响因素[J]. 地理学报, 2019, 74(9): 1866-1877. |
[8] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[9] | 刘娟,姚晓军,刘时银,郭万钦,许君利. 1970-2016年冈底斯山冰川变化[J]. 地理学报, 2019, 74(7): 1333-1344. |
[10] | 刘俊,黄莉,孙晓倩,李宁馨,张恒锦. 气候变化对中国观鸟旅游的影响——基于鸟类物候变化的分析[J]. 地理学报, 2019, 74(5): 912-922. |
[11] | 马丹阳, 尹云鹤, 吴绍洪, 郑度. 中国干湿格局对未来高排放情景下气候变化响应的敏感性[J]. 地理学报, 2019, 74(5): 857-874. |
[12] | 高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543. |
[13] | 唐见,曹慧群,陈进. 生态保护工程和气候变化对长江源区植被变化的影响量化[J]. 地理学报, 2019, 74(1): 76-86. |
[14] | 李依婵,李育,朱耿睿. 一种新的气候变化敏感区的定义方法与预估[J]. 地理学报, 2018, 73(7): 1283-1295. |
[15] | 张扬,白红英,苏凯,黄晓月,孟清,郭少壮. 1960-2013年秦岭陕西段南北坡极端气温变化空间差异[J]. 地理学报, 2018, 73(7): 1296-1308. |