地理学报 ›› 2020, Vol. 75 ›› Issue (12): 2620-2635.doi: 10.11821/dlxb202012006
• 地理科学与资源研究所80周年学科建设发展 • 上一篇 下一篇
于贵瑞(), 李文华, 邵明安, 张扬建(
), 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清
收稿日期:
2020-10-22
修回日期:
2020-12-11
出版日期:
2020-12-25
发布日期:
2021-02-25
作者简介:
于贵瑞(1959-), 男, 辽宁大连人, 研究员, 中国科学院院士, 主要从事生态学与自然地理学交叉研究。E-mail:
YU Guirui(), LI Wenhua, SHAO Ming'an, ZHANG Yangjian(
), WANG Shaoqiang, NIU Shuli, HE Honglin, DAI Erfu, LI Fadong, MA Zeqing
Received:
2020-10-22
Revised:
2020-12-11
Published:
2020-12-25
Online:
2021-02-25
摘要:
中国科学院地理科学与资源研究所生态系统学科以生态系统生态学研究为核心,通过研制生态系统观测和模拟分析的技术和方法,探索解决区域性/大尺度生态学问题的理论和方法,监测生态系统变化,认知生态系统变化规律,推动生态系统生态学、生物地理生态学、全球变化生态学和生态信息科学技术的发展,创新生态系统管理模式,服务于国家和地方的生态建设、应对全球变化及区域可持续发展。面向国家重大需求,在中国华北平原农业区、南方红壤丘陵林业区、青藏高原农牧区以及黄土高原区等典型区域开展生态系统管理技术与模式的集成与创新研究,着力解决国家生态文明建设和应对全球气候变化中的重大生态学问题,推动区域生态系统管理领域的科技进步。围绕生态系统生态学学科前沿,着重在① 生态系统联网观测、模拟与信息管理,② 生态系统结构、过程与功能,③ 生态系统空间格局与机制,④ 生态系统对全球变化的响应与适应,⑤ 生态系统管理与生态系统服务等五大主要研究方向,系统开展生态系统生态学前沿理论和实践的创新研究,研究成果处于国内和国际生态学研究的科学前沿。
于贵瑞, 李文华, 邵明安, 张扬建, 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清. 生态系统科学研究与生态系统管理[J]. 地理学报, 2020, 75(12): 2620-2635.
YU Guirui, LI Wenhua, SHAO Ming'an, ZHANG Yangjian, WANG Shaoqiang, NIU Shuli, HE Honglin, DAI Erfu, LI Fadong, MA Zeqing. Ecosystem science research and ecosystem management[J]. Acta Geographica Sinica, 2020, 75(12): 2620-2635.
[1] | Yu G R, Wen X F, Sun X M, et al. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006,137(3/4):125-137. |
[2] | Yu Guirui, Sun Xiaomin. Principles of Flux Measurement in Terrestrial Ecosystems. Beijing: Higher Education Press. 2006. |
[ 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法. 北京: 高等教育出版社, 2006.] | |
[3] | Yu Guirui, Zhang Leiming, Sun Xiaomin. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Progress in Geography, 2014,33(7):903-917. |
[ 于贵瑞, 张雷明, 孙晓敏. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望. 地理科学进展, 2014,33(7):903-917.] | |
[4] | Luo Tianxiang. Patterns of net primary productivity for Chinese major forest types and their mathematical models. Resources Science, 1996,18(5):41. |
[ 罗天祥. 中国主要森林类型生物生产力格局及其数学模型. 资源科学, 1996,18(5):41.] | |
[5] | Yu G R, Li X R, Wang Q F, et al. Carbon storage and its spatial pattern of terrestrial ecosystem in China. Journal of Resources and Ecology, 2010,1(2):97-109. |
[6] | Cao Mingkui, Yu Guirui, Liu Jiyuan, et al. Multi scale experimental observation and cross scale mechanism simulation of carbon cycle in terrestrial ecosystem. Scientia Sinica Terrae, 2004,34(Suppl.2):1-14. |
[ 曹明奎, 于贵瑞, 刘纪远, 等. 陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟. 中国科学(D辑: 地球科学), 2004,34(Suppl.2):1-14.] | |
[7] | Cao M K, Prince S D, Li K R, et al. Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 2003,9(4):536-546. |
[8] | Hu Zhongmin, Fan Jiangwen, Zhong Huaping, et al. Temporal and spatial variability of aboveground productivity along precipitation gradient in temperate grassland of China. Scientia Sinica Terrae, 2006(12), 1154-1162. |
[ 胡中民, 樊江文, 钟华平, 等. 中国温带草地地上生产力沿降水梯度的时空变异性. 中国科学(D辑: 地球科学), 2006(12):1154-1162.] | |
[9] |
Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. PNAS, 2014,111:4910-4915.
doi: 10.1073/pnas.1317065111 pmid: 24639529 |
[10] |
He N P, Liu C C, Piao S L, et al. Ecosystem traits linking functional traits to macroecology. Trends in Ecology and Evolution, 2019,34(3):200-210.
doi: 10.1016/j.tree.2018.11.004 pmid: 30527959 |
[11] |
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018,555(7694):94-97.
doi: 10.1038/nature25783 pmid: 29466331 |
[12] | Li Wenhua, Ouyang Zhiyun, Zhao Jingzhu. Research on Ecosystem Service Function. Beijing: China Meteorological Press, 2002. |
[ 李文华, 欧阳志云, 赵景柱. 生态系统服务功能研究. 北京: 气象出版社, 2002.] | |
[13] | Gu F X, Zhang Y D, Huang M, et al. Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981-2010. Atmospheric Environment, 2015,123:171-179. |
[14] | Zhang L, Mao J F, Shi X Y, et al. Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites. Agricultural and Forest Meteorology, 2016,226/227:174-185. |
[15] |
Ge R, He H L, Ren X L, et al. Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: A perspective from long-term data assimilation. Global Change Biology, 2019,25(3):938-953.
doi: 10.1111/gcb.14547 pmid: 30552830 |
[16] | Zhang L, Luo Y Q, Yu G R, et al. Estimated carbon residence times in three forest ecosystems of eastern China: Applications of probabilistic inversion. Journal of Geophysical Research: Biogeosciences, 2010,115:G01010. Doi: 10.1029/2009jg001004. |
[17] |
Ren X L, He H L, Moore D J P, et al. Uncertainty analysis of modeled carbon and water fluxes in a subtropical coniferous plantation. Journal of Geophysical Research: Biogeosciences, 2013,118(4):1674-1688.
doi: 10.1002/2013JG002402 |
[18] | He H L, Liu M, Xiao X M, et al. Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences, 2014,119(3):466-486. |
[19] | Ren X L, He H L, Zhang L, et al. Modeling and uncertainty analysis of carbon and water fluxes in a broad- leaved Korean pine mixed forest based on model-data fusion. Ecological Modelling, 2018,379:39-53. |
[20] | Zhu X J, Yu G R, He H L, et al. Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: Results from upscaling network observations. Global and Planetary Change, 2014,118:52-61. |
[21] |
Lu F, Hu H F, Sun W J, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. PNAS, 2018,115(16):4039-4044.
pmid: 29666317 |
[22] | Gao Y, Yu G R, Yang T T, et al. New insight into global blue carbon estimation under human activity in land-sea interaction area: a case study of China. Earth-Science Review, 2016,159:36-46. |
[23] |
Jia Y L, Yu G R, He N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 2014,4. Doi: 10.1038/srep03763.
doi: 10.1038/srep07592 pmid: 25534230 |
[24] | Gao Y, He N P, Yu G R, et al. Impact of external nitrogen and phosphorus input between 2006 and 2010 on carbon cycle in China seas. Regional Environmental Change, 2015,15(4):631-641. |
[25] |
Yu G R, Zhu X J, Fu Y L, et al. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 2013,19(3):798-810.
pmid: 23504837 |
[26] |
Chen Z, Yu G R, Zhu X J, et al. Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural and Forest Meteorology, 2015,203:180-190.
doi: 10.1016/j.agrformet.2015.01.012 |
[27] |
Zhang Y J, Yu G R, Yang J, et al. Climate- driven global changes in carbon use efficiency. Global Ecology and Biogeography, 2014,23(2):144-155.
doi: 10.1111/geb.12086 |
[28] |
Jia Y L, Yu G R, Gao Y N, et al. Global inorganic nitrogen dry deposition inferred from ground and space- based measurements. Scientific Reports, 2016,6:19810. Doi: 10.1038/srep19810.
doi: 10.1038/srep19810 pmid: 26813440 |
[29] | Yu G R, Jia Y L, He N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019,12:424-429. |
[30] |
Xia J Y, Niu S L, Ciais P, et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. PNAS, 2015,112(9):2788-2793.
doi: 10.1073/pnas.1413090112 pmid: 25730847 |
[31] | Niu S L, Fu Z, Luo Y Q, et al. Interannual variability of ecosystem carbon exchange: From observation to prediction. Global Ecology and Biogeography, 2017,26(11):1225-1237. |
[32] |
Hu Z M, Guo Q, Li S G, et al. Shifts in the dynamics of productivity signal ecosystem state transitions at the biomescale. Ecology Letters, 2018,21(10):1457-1466.
doi: 10.1111/ele.13126 pmid: 30019373 |
[33] |
Li Y, Niu S L, Yu G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: A meta-analysis. Global Change Biology, 2016,22(2):934-943.
doi: 10.1111/gcb.13125 pmid: 26463578 |
[34] |
Niu S L, Classen A T, Dukes J S, et al. Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 2016,19(6):697-709.
doi: 10.1111/ele.12591 pmid: 26932540 |
[35] | Tian D S, Reich P B, Chen H Y H, et al. Global changes alter plant multi-element stoichiometric coupling. New Phytologist, 2018,221(2):807-817. |
[36] | Kou L, Jiang L, Fu X L, et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytologist, 2018,218:1450-1461. |
[37] | Kou L, Jiang L, Hättenschwiler S, et al. Diversity-decomposition relationships in forests worldwide. eLife Sciences, 2020,9:e55813. Doi: 10.7554/eLife.55813. |
[38] |
Qiao N, Schaefer D, Blagodatskaya E, et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Global Change Biology, 2014,20(6):1943-1954.
doi: 10.1111/gcb.12458 pmid: 24293210 |
[39] |
Song M H, Guo Y, Yu F H, et al. Shifts in priming partly explain impacts of long- term nitrogen input in different chemical forms on soil organic carbon storage. Global Change Biology, 2018,20:1943-1954.
doi: 10.1111/gcb.12458 pmid: 24293210 |
[40] |
Zhang G L, Zhang Y J, Dong J W, et al. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. PNAS, 2013,110(11):4309-4314.
doi: 10.1073/pnas.1210423110 pmid: 23440201 |
[41] |
Quan Q, Tian D S, Luo Y Q, et al. Water scaling of ecosystem carbon cycle feedback to climate warming. Science Advances, 2019, 5(8): eaav1131. Doi: 10.1126/sciadv.aav1131.
doi: 10.1126/sciadv.aav1131 pmid: 31457076 |
[42] | Zhou Yurong, Yu Zhenliang, Zhao Shidong. Carbon storage and budget of major chinese forest types. Acta Phytoecologica Sinica, 2000(5):518-522. |
[ 周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 2000(5):518-522.] | |
[43] |
Hu Z M, Shi H, Cheng K L, et al. Joint structural and physiological control on the inter-annual variation in productivity in a temperate grassland: A data-model comparison. Global Change Biology, 2018,24(7):2965-2979.
doi: 10.1111/gcb.14274 pmid: 29665249 |
[44] | Fan Jiangwen, Zhong Huaping, Liang Biao, et al. Carbon stock in grassland ecosystem and its affecting factors. Grassland of China, 2003(6):52-59. |
[ 樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003(6):52-59.] | |
[45] | Wang Shaoqiang, Zhou Chenghu, Li Kerang, et al. Analysis on Spatial Distribution Characteristics of Soil Organic Carbon Reservoir in China. Acta Geographica Sinica, 2000(5):533-544. |
[ 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000(5):533-544.] | |
[46] | Kong D L, Ma C G, Zhang Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 2014,203(3):863-872. |
[47] |
Li L, Mccormack M L, Ma C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 2015,18(9):899-906.
doi: 10.1111/ele.12466 pmid: 26108338 |
[48] | Zhang Xianzhou, Yang Yongping, Piao Shilong, et al. Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 2015,60(32):3048-3056. |
[ 张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化. 科学通报, 2015,60(32):3048-3056.] | |
[49] | Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 2014,189/190:11-18. |
[50] | Zhang Xianzhou, He Yongtao, Shen Zhenxi, et al. Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bulletin of Chinese Academy of Sciences, 2015,30(3):306-312. |
[ 张宪洲, 何永涛, 沈振西, 等. 西藏地区可持续发展面临的主要生态环境问题及对策. 中国科学院院刊, 2015,30(3):306-312.] | |
[51] | He Yongtao, Zhang Xianzhou, Yu Chengqun. Coupling crop farming and pastoral system for regional development and their ecological effects on the Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 2016,31(1):112-117. |
[ 何永涛, 张宪洲, 余成群. 西藏高原农牧系统耦合发展及其生态效应. 中国科学院院刊. 2016,31(1):112-117.] | |
[52] | Li Wenhua, et al. Theory, Method and Application of Ecosystem Service Function Value Evaluation. Beijing: China Renmin University Press, 2008. |
[ 李文华, 等. 生态系统服务功能价值评估的理论、方法与应用. 北京: 中国人民大学出版社, 2008.] | |
[53] | Li Wenhua, et al. Current Status of Ecology Research in China. Beijing: Science Press, 2013. |
[ 李文华, 等. 中国当代生态学研究. 北京: 科学出版社, 2013.] |
[1] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[2] | 王可逸, 刘晓宏, 曾小敏, 徐国保, 张凌楠, 李春越. 树轮稳定氮同位素记录的进展与展望[J]. 地理学报, 2021, 76(5): 1193-1205. |
[3] | 王淑佳, 孙九霞. 中国传统村落可持续发展评价体系构建与实证[J]. 地理学报, 2021, 76(4): 921-938. |
[4] | 崔耀平, 李楠, 付一鸣, 陈良雨. 中美俄加陆域碳汇对人为增温的消减贡献[J]. 地理学报, 2021, 76(1): 167-177. |
[5] | 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. |
[6] | 张静静, 朱文博, 朱连奇, 李艳红. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析[J]. 地理学报, 2020, 75(5): 975-988. |
[7] | 贺艳华, 邬建国, 周国华, 周兵兵. 论乡村可持续性与乡村可持续性科学[J]. 地理学报, 2020, 75(4): 736-752. |
[8] | 李寻欢, 周扬, 陈玉福. 区域多维贫困测量的理论与方法[J]. 地理学报, 2020, 75(4): 753-768. |
[9] | 左秀玲, 苏奋振, 张宇, 吴文周, 吴迪. 全球气候变化下南海诸岛保护优先区识别分析[J]. 地理学报, 2020, 75(3): 647-661. |
[10] | 邓祥征, 金贵, 何书金, 王成新, 李兆华, 王占岐, 宋马林, 杨庆媛, 张安录, 陈建成. 发展地理学研究进展与展望[J]. 地理学报, 2020, 75(2): 226-239. |
[11] | 陆大道, 刘彦随, 方创琳, 陈明星, 王姣娥, 席建超. 人文与经济地理学的发展和展望[J]. 地理学报, 2020, 75(12): 2570-2592. |
[12] | 李睿倩, 李永富, 胡恒. 生态系统服务对国土空间规划体系的理论与实践支撑[J]. 地理学报, 2020, 75(11): 2417-2430. |
[13] | 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24. |
[14] | 刘立程, 刘春芳, 王川, 李鹏杰. 黄土丘陵区生态系统服务供需匹配研究——以兰州市为例[J]. 地理学报, 2019, 74(9): 1921-1937. |
[15] | 刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J]. 地理学报, 2019, 74(8): 1489-1507. |