地理学报 ›› 2020, Vol. 75 ›› Issue (1): 25-40.doi: 10.11821/dlxb202001003
王芳1, 张晋韬1,2
收稿日期:
2019-05-21
修回日期:
2019-12-20
出版日期:
2020-01-25
发布日期:
2020-03-25
作者简介:
王芳(1979-), 女, 博士, 副研究员, 主要从事全球变化研究。E-mail: wangf@igsnrr.ac.cn
基金资助:
WANG Fang1, ZHANG Jintao1,2
Received:
2019-05-21
Revised:
2019-12-20
Published:
2020-01-25
Online:
2020-03-25
Supported by:
摘要:
为了应对全球气候变化,《巴黎协定》提出各国将以“国家自主贡献”(INDC)的方式参与全球温室气体减排行动,而在“国家自主贡献”排放目标情景下区域降水变化的格局和特征尚不清楚。中亚地区位于欧亚大陆腹地,是中国“一带一路”倡议发展的关键地区。本文研究了中亚地区的降水变化对全球INDC排放的响应,基于参与国际耦合模式比较计划第五阶段(CMIP5)的33个全球气候模式的模拟。结果表明:在INDC目标情景下,到21世纪末中亚地区的平均年降水量相对现代水平(1985—2005年平均)增加10.6%(4.6%~13.3%),其中高纬度地区的响应大于低纬度地区。进一步看,中亚地区极端强降水事件随着气候变暖而持续增加,但极端持续干期事件在不同区域呈现不同的变化趋势。考虑极端降水事件相关风险,极端强降水和持续干期事件的人口暴露度在中亚大部分区域都增加,将全球温升控制在较低水平(如2.0 ℃或1.5 ℃)可显著降低暴露度。以上结果有助于增进对未来极端气候事件风险的认识,为中亚这一生态脆弱地区的气候变化的减缓与适应政策提供参考。
王芳, 张晋韬. 《巴黎协定》排放情景下中亚地区降水变化响应[J]. 地理学报, 2020, 75(1): 25-40.
WANG Fang, ZHANG Jintao. Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement[J]. Acta Geographica Sinica, 2020, 75(1): 25-40.
表2
本研究使用的33个CMIP5全球气候模式的基本信息
模式名称 | 机构名称 | 国家 | 水平分辨率 (全球网格数) |
---|---|---|---|
ACCESS1-0 | 澳大利亚联邦科学与工业研究组织/气象局 | 澳大利亚 | 192×145 |
ACCESS1-3 | 192×145 | ||
BCC-CSM1-1 | 中国气象局国家气候中心 | 中国 | 128×64 |
BCC-CSM1-1-m | 320×160 | ||
BNU-ESM | 北京师范大学 | 中国 | 128×64 |
CanESM2 | 加拿大气候模拟与分析中心 | 加拿大 | 128×64 |
CCSM4 | 美国国家大气研究中心 | 美国 | 288×192 |
CESM1-BGC | 288×192 | ||
CMCC-CESM | 意大利地中海气候中心 | 意大利 | 96×96 |
CMCC-CM | 480×240 | ||
CMCC-CMS | 192×96 | ||
CNRM-CM5 | 法国气象研究中心 | 法国 | 256×128 |
CSIRO-Mk3-6-0 | 澳大利亚联邦科学与工业研究组织/昆士兰洲气候变化研究中心 | 澳大利亚 | 192×96 |
EC-EARTH | EC-EARTH研究联合体 | 荷兰/冰岛 | 320×160 |
FGOALS-g2 | 中国科学院大气物理研究所 | 中国 | 128×60 |
FGOALS-s2 | 128×108 | ||
GFDL-CM3 | 美国地球物理流体动力学实验室 | 美国 | 144×90 |
GFDL-ESM2G | 144×90 | ||
GFDL-ESM2M | 144×90 | ||
HadGEM2-CC | 英国哈德莱气象中心 | 英国 | 192×145 |
HadGEM2-ES | 192×145 | ||
INM-CM4 | 俄罗斯科学院计算数学研究所 | 俄罗斯 | 180×120 |
IPSL-CM5A-LR | 法国Pierre Simon物理学研究所 | 法国 | 96×96 |
IPSL-CM5A-MR | 144×143 | ||
IPSL-CM5B-LR | 96×96 | ||
MIROC5 | 日本海洋地球科学与技术局、大气海洋研究所和国家环境变化研究所 | 日本 | 256×128 |
MIROC-ESM | 128×64 | ||
MIROC-ESM-CHEM | 128×64 | ||
MPI-ESM-LR | 德国普朗克气象研究所 | 德国 | 192×96 |
MPI-ESM-MR | 192×96 | ||
MRI-CGCM3 | 日本气象研究所 | 日本 | 320×160 |
MRI-ESM1 | 320×160 | ||
NorESM1-M | 挪威气候中心 | 挪威 | 144×96 |
[1] | UNFCCC. Adoption of the Paris Agreement: Proposal by the President. Geneva, 2015. |
[2] | UNFCCC. Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions. Paris, 2015. |
[3] | Gupta S, Tirpak D, Burger N , et al. Policies, instruments, and co-operative arrangements//Metz O B, Bosch P, Dave R, et al. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, USA: Cambridge University Press, 2007: 745-807. |
[4] | Li Donghuan, Zou Liwei, Zhou Tianjun . Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a regional climate model. Advances in Earth Science, 2017,32(4):446-457. |
[ 李东欢, 邹立维, 周天军 . 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估. 地球科学进展, 2017,32(4):446-457.] | |
[5] | Hao Ying, Ma Jingjin, An Jingjin , et al. Projected changes in climate and river discharge in the Chaobai River Basin under 1.5 ℃ and 2.0 ℃ global warming. Climate Change Research, 2018,14(3):237-246. |
[ 郝莹, 马京津, 安晶晶 , 等. 全球1.5 ℃和2.0 ℃温升下潮白河流域气候和径流量变化预估. 气候变化研究进展, 2018,14(3):237-246.] | |
[6] | Schleussner C F, Lissner T K, Fischer E M , et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 ℃ and 2 ℃. Earth System Dynamics, 2016,7(2):327-351. |
[7] | Mitchell D, Achutarao K, Allen M , et al. Half a degree additional warming, prognosis and projected impacts (HAPPI): Background and experimental design. Geoscientific Model Development, 2017,10(2):571-583. |
[8] | Zhang W, Zhou T, Zou L , et al. Reduced exposure to extreme precipitation from 0.5 ℃ less warming in global land monsoon regions. Nature Communications, 2018,9(1):3153. |
[9] | Sanderson B M O'neill B C Tebaldi C . What would it take to achieve the Paris temperature targets? Geophysical Research Letters, 2016,43(13):7133-7142. |
[10] | Rogelj J, Den Elzen M, Höhne N , et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ℃. Nature, 2016,534:631-639. |
[11] | UNEP. The Emissions Gap Report. Nairobi, 2017. |
[12] | Fawcett A A, Iyer G C, Clarke L E , et al. Climate Policy. Can Paris pledges avert severe climate change? Science, 2015,350(6265):1168-1169. |
[13] | Lioubimtseva E, Cole R, Adams J M , et al. Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 2005,62(2):285-308. |
[14] | Zhang M, Chen Y, Shen Y , et al. Tracking climate change in Central Asia through temperature and precipitation extremes. Journal of Geographical Sciences, 2019,29(1):3-28. |
[15] | Deng Haijun, Chen Yaning . The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia. Acta Geographica Sinica, 2018,73(7):1309-1323. |
[ 邓海军, 陈亚宁 . 中亚天山山区冰雪变化及其对区域水资源的影响. 地理学报, 2018,73(7):1309-1323.] | |
[16] | Li Xinwu, Zhang Li, Guo Huadong , et al. Space recognition of eco-environment global change response of arid and semi-arid region of the Silk Road Economic Belt. Bulletin of Chinese Academy of Sciences, 2016,31(5):559-566. |
[ 李新武, 张丽, 郭华东 , 等. “丝绸之路经济带”干旱—半干旱区生态环境全球变化响应的空间认知. 中国科学院院刊, 2016,31(5):559-566.] | |
[17] | Han Qifei, Lu Yan, Li Chaofan . Impact of climate change on grassland carbon cycling in Central Asia. Arid Land Geography, 2018,41(6):1351-1357. |
[ 韩其飞, 陆研, 李超凡 . 气候变化对中亚草地生态系统碳循环的影响研究. 干旱区地理, 2018,41(6):1351-1357.] | |
[18] | Chen Y, Li Z, Li W , et al. Water and ecological security: Dealing with hydroclimatic challenges at the heart of China's Silk Road. Environmental Earth Sciences, 2016,75(10):881. |
[19] | Howard K W F, Howard K K . The new "Silk Road Economic Belt" as a threat to the sustainable management of Central Asia's transboundary water resources. Environmental Earth Sciences, 2016,75(11):976. |
[20] | Li P, Qian H, Zhou W . Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road. Environmental Earth Sciences, 2017,76(3):105. |
[21] | IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, and New York, USA: Cambridge University Press, 2014. |
[22] | IPCC. Global Warming of 1.5 ℃. Cambridge, UK, and New York, USA: Cambridge University Press, 2018. |
[23] | UNFCCC. National Inventory Submissions, 2019. |
[24] | Wang F, Tokarska K B, Zhang J , et al. Climate warming in response to emission reductions consistent with the Paris Agreement. Advances in Meteorology, 2018,2018:1-9. |
[25] | Addressing Global Warming. https://climateactiontracker.org/global/temperatures/. |
[26] | Wang F, Ge Q, Chen D , et al. Global and regional climate responses to national-committed emission reductions under the Paris agreement. Geografiska Annaler: Series A, Physical Geography, 2018,100(3):240-253. |
[27] | Taylor K E, Stouffer R J, Meehl G A . An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2011,93(4):485-498. |
[28] | Reichler T, Kim J . How well do coupled models simulate today's climate? Bulletin of the American Meteorological Society, 2008,89(3):303-312. |
[29] | Pierce D W, Barnett T P, Santer B D , et al. Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences, 2009,106(21):8441-8446. |
[30] | Ziese M, Rauthe-Schöch A, Becker A , et al. GPCC Full Data Daily Version. 2018 at 10°: Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data [DB/OL]. Doi: 10.5676/DWD_GPCC/FD_D_V2018_100. |
[31] | Robert V, Andreas G, Stefan S , et al. The European climate under a 2 ℃ global warming. Environmental Research Letters, 2014,9(3):034006. |
[32] | Huang J, Yu H, Dai A , et al. Drylands face potential threat under 2 ℃ global warming target. Nature Climate Change, 2017,7:417-422. |
[33] | Zhang X, Alexander L, Hegerl G C , et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2011,2(6):851-870. |
[34] | Dai A . Increasing drought under global warming in observations and models. Nature Climate Change, 2012,3:52-58. |
[35] | Prudhomme C, Giuntoli I, Robinson E L , et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences, 2014,111(9):3262-3267. |
[36] | Hirabayashi Y, Mahendran R, Koirala S , et al. Global flood risk under climate change. Nature Climate Change, 2013,3:816-821. |
[37] | Lavell A, Oppenheimer M, Diop C , et al. Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience// Field C B, Barros V, Stocker T F, et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK, and New York, USA: Cambridge University Press, 2012: 25-64. |
[38] | Cox D R, Hinkley D V . Theoretical Statistics. London: Chapman and Hall, 1974: 511. |
[39] | Jones B, O'neill B C . Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environmental Research Letters, 2016,11(8):084003. |
[40] | Vuuren D P V, Edmonds J, Kainuma M , et al. The representative concentration pathways: An overview. Climatic Change, 2011,109(1-2):5-31. |
[41] | Hoegh-Guldberg O, Jacob D, Taylor M , et al. Impacts of 1.5 ℃ global warming on natural and human systems//Masson-Delmotte V, Zhai P, Pörtner H O, et al. Global warming of 1.5 ℃. An IPCC Special Report on the Impacts of Global Warming of 1.5 ℃ above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge, UK, and New York, USA: Cambridge University Press, 2018. |
[42] | Sanderson B M, Xu Y, Tebaldi C , et al. Community climate simulations to assess avoided impacts in 1.5 and 2 ℃ futures. Earth System Dynamics, 2017,8(3):827-847. |
[43] | Jiang D, Sui Y, Lang X . Timing and associated climate change of a 2 ℃ global warming. International Journal of Climatology, 2016,36(14):4512-4522. |
[1] | 温庆志, 孙鹏, 张强, 姚蕊. 非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J]. 地理学报, 2020, 75(7): 1465-1482. |
[2] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[3] | 何丽烨, 程善俊, 马宁, 郭军. 海河流域夏季降水关键区季内演变及其环流配置的定量化分析[J]. 地理学报, 2020, 75(1): 41-52. |
[4] | 刘晓琼, 吴泽洲, 刘彦随, 赵新正, 芮旸, 张健. 1960-2015年青海三江源地区降水时空特征[J]. 地理学报, 2019, 74(9): 1803-1820. |
[5] | 高超,汪丽,陈财,罗纲,孙艳伟. 海平面上升风险中国大陆沿海地区人口与经济暴露度[J]. 地理学报, 2019, 74(8): 1590-1604. |
[6] | 曾岁康,雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318. |
[7] | 陆福志,鹿化煜. 秦岭—大巴山高分辨率气温和降水格点数据集的建立及其对区域气候的指示[J]. 地理学报, 2019, 74(5): 875-888. |
[8] | 杨家伟, 陈华, 侯雨坤, 赵英, 陈启会, 许崇育, 陈杰. 基于气象旱涝指数的旱涝急转事件识别方法[J]. 地理学报, 2019, 74(11): 2358-2370. |
[9] | 辛蕊, 段克勤. 2017年夏季秦岭降水的数值模拟及其空间分布[J]. 地理学报, 2019, 74(11): 2329-2341. |
[10] | 尹占娥,田鹏飞,迟潇潇. 基于情景的1951-2011年中国极端降水风险评估[J]. 地理学报, 2018, 73(3): 405-413. |
[11] | 朱秀迪, 张强, 孙鹏. 北京市快速城市化对短时间尺度降水时空特征影响及成因[J]. 地理学报, 2018, 73(11): 2086-2104. |
[12] | 张晓东,朱文博,张静静,朱连奇,赵芳,崔耀平. 伏牛山地森林植被物候及其对气候变化的响应[J]. 地理学报, 2018, 73(1): 41-53. |
[13] | 张东良, 兰波, 杨运鹏. 不同时间尺度的阿尔泰山北部和南部降水对比研究[J]. 地理学报, 2017, 72(9): 1569-1579. |
[14] | 王圆圆, 郭徵, 李贵才, 郭兆迪. 基于广义加性模型估算1979-2014年三峡库区降水及其特征分析[J]. 地理学报, 2017, 72(7): 1207-1220. |
[15] | 吴绍洪, 潘韬, 刘燕华, 邓浩宇, 焦珂伟, 陆晴, 冯爱青, 岳溪柳, 尹云鹤, 赵东升, 高江波. 中国综合气候变化风险区划[J]. 地理学报, 2017, 72(1): 3-17. |