地理学报 ›› 2017, Vol. 72 ›› Issue (5): 790-803.doi: 10.11821/dlxb201705003
张玉柱1,2(), 黄春长3, 陈莹璐3, 谭志海4, 杨利荣2, 张云翔2, 邱海军1, 刘波1, 赵发珠1
收稿日期:
2016-12-15
修回日期:
2017-03-20
出版日期:
2017-05-20
发布日期:
2017-05-20
作者简介:
作者简介:张玉柱(1987-), 男, 山东临沂人, 博士, 讲师, 中国地理学会会员(S110010398M), 主要从事环境变迁与人地关系演变研究。E-mail:
基金资助:
Yuzhu ZHANG1,2(), Chunchang HUANG3, Yinglu CHEN3, Zhihai TAN4, Lirong YANG2, Yunxiang ZHANG2, Haijun QIU1, Bo LIU1, Fazhu ZHAO1
Received:
2016-12-15
Revised:
2017-03-20
Published:
2017-05-20
Online:
2017-05-20
Supported by:
摘要:
通过对黄河晋陕峡谷壶口至龙门段开展广泛细致的野外考察,发现了典型的晚更新世以来黄土—土壤层夹古风成沙层剖面—北桑峪剖面(BSY)。结合不同类型沉积物的野外宏观特征、磁化率、粒度成分、石英颗粒表面特征和地球化学元素的对比分析,确定黄河晋陕峡谷壶口至龙门段BSY剖面中所夹古风成沙层的性质为中沙质细沙,是在干旱多风环境下形成的沙质沉积物。基于光释光(OSL)测年数据,确定其沉积年代为12.5-11.6 ka,记录了黄河中游发生在末次冰消期的极端干旱事件,其与相邻区域沙漠/黄土过渡带中湖沼沉积和风成黄土—古土壤剖面记录的新仙女木事件相对应。该剖面中古风成沙沉积物的物质来源,主要来自黄河晋陕峡谷的古河床相沙层物质。这是因为该河段处于干旱半干旱季风气候区,在新仙女木时期,黄河晋陕峡谷处于极端干冷的环境之中,冬季风强盛、夏季风衰弱,黄河水位下降明显,河漫滩和江心洲将大面积出露,大量的沙物质在风力作用下向岸边输移,成为河谷两侧缓坡台地上古风成沙沉积层出现的主要沙源地。这个研究成果对于进一步揭示黄河中游流域极端干旱事件发生的时间性规律及其与季风气候变化的关系,具有重要的科学意义。
张玉柱, 黄春长, 陈莹璐, 谭志海, 杨利荣, 张云翔, 邱海军, 刘波, 赵发珠. 新仙女木期黄河晋陕峡谷古风成沙层年代及其物质来源[J]. 地理学报, 2017, 72(5): 790-803.
Yuzhu ZHANG, Chunchang HUANG, Yinglu CHEN, Zhihai TAN, Lirong YANG, Yunxiang ZHANG, Haijun QIU, Bo LIU, Fazhu ZHAO. Age and provenance of Younger Dryas paleo-aeolian sandlayers in the Jin-Shaan Gorges of the Yellow River[J]. Acta Geographica Sinica, 2017, 72(5): 790-803.
表1
黄河晋陕峡谷壶口至龙门段北桑峪晚更新世以来黄土—土壤剖面地层划分及描述
沉积地层 | 地层符号 | 颜色 | 地层描述 |
---|---|---|---|
坡积土层 (20~0 cm) | Slope deposit (SD) | 灰黄色 | 坡积石渣土,分选极差,含有中间夹有坡积物角砾石块,厚度在10~20 cm之间。 |
古风成沙层 (500~20 cm) | Aeolian sand | 灰黄色 | 中沙质细沙,分选极好,很疏松,马兰黄土地形面延展,厚度在50~400 cm之间,水平延伸距离达10 m,高度由顶部至两坡侧逐渐降低,直至尖灭,古风成沙层中可见到明显的风成层理,包括了厚度极薄(小于或等于1~2 mm)的加积纹层构成的水平层理,厚度在几毫米至数厘米前积纹层构成的倾向偏南的平板状或楔形交错层理,以及由加积纹层与前积纹层组成的水平—交错层理。 |
马兰黄土层 (> 500 cm) | Malan loess (L1) | 浊黄橙色 | 极细沙质粉沙,分选好,块状构造,疏松多孔,厚度大于500 cm,未见底。 |
现代河床相沙层 | Riverbed sand | 灰黄色 | 粉沙质中沙,分选较好,很疏松。 |
现代沙丘沙层 | Modern dune sand | 棕黄色 | 中沙质细沙,分选极好,很疏松。 |
表2
黄河晋陕峡谷壶口至龙门段北桑峪晚更新世以来黄土—土壤剖面样品的OSL测年结果
样品 编号 | 地层 层位 | 深度 (cm) | U (ppm) | Th (ppm) | K (%) | 含水量 (%) | 等效剂量 De (Gy) | 环境剂量 Dy (Gy ka-1) | 年龄 (ka) |
---|---|---|---|---|---|---|---|---|---|
BSY-1 | 古风成沙层 | 22.5 | 1.02±0.05 | 4.97±0.17 | 2.16±0.06 | 14.0 | 30.39±1.64 | 2.64±0.06 | 11.6±0.7 |
BSY-2 | 古风成沙层 | 52.5 | 0.81±0.05 | 3.89±0.14 | 2.21±0.06 | 14.0 | 27.98±1.02 | 2.34±0.06 | 11.9±0.5 |
BSY-3 | 古风成沙层 | 497.5 | 1.10±0.06 | 4.72±0.17 | 2.18±0.06 | 14.0 | 32.02±1.02 | 2.55±0.06 | 12.5±0.5 |
BSY-4 | 马兰黄土层 | 502.5 | 2.46±0.10 | 11.30±0.32 | 1.76±0.06 | 15.8 | 36.73±1.20 | 2.92±0.07 | 12.6±0.5 |
表4
黄河晋陕峡谷壶口至龙门段北桑峪晚更新世以来黄土—土壤剖面样品与其他沉积物粒度成分对比
沉积地层 | 粘土 (<2 μm, %) | 粉沙 (2~63 μm, %) | 极细沙 (63~125 μm, %) | 细沙 (125~250 μm, %) | 中沙 (250~500 μm, %) | 粗沙 (>500 μm, %) |
---|---|---|---|---|---|---|
古风成沙层上部 | 0.00 | 2.87 | 12.20 | 45.86 | 36.82 | 2.25 |
古风成沙层下部 | 0.00 | 2.79 | 13.80 | 45.59 | 35.19 | 2.63 |
马兰黄土层 | 5.92 | 71.07 | 20.77 | 1.71 | 0.41 | 0.12 |
现代河床相沙层 | 2.97 | 24.94 | 12.03 | 17.39 | 31.58 | 11.09 |
现代沙丘沙层 | 0.83 | 2.26 | 11.70 | 58.80 | 25.60 | 0.83 |
表5
黄河晋陕峡谷壶口至龙门段北桑峪晚更新世以来黄土—土壤剖面样品与其他沉积物粒度参数值对比
沉积地层 | 中值粒径(Md, μm) | 平均粒径(Mz, μm) | 标准偏差(σ) | 分选系数(S) | 偏态(SK) | 峰态(Kg) |
---|---|---|---|---|---|---|
古风成沙层上部 | 219.05 | 213.17 | 0.73 | 0.49 | 0.09 | 0.99 |
古风成沙层下部 | 213.17 | 228.12 | 0.75 | 0.51 | 0.09 | 0.99 |
马兰黄土层 | 38.02 | 31.34 | 1.60 | 0.79 | 0.41 | 1.56 |
现代河床相沙层 | 203.49 | 140.98 | 2.04 | 1.33 | 0.49 | 1.11 |
现代沙丘沙层 | 196.50 | 178.70 | 0.60 | 0.39 | 0.10 | 1.09 |
表6
黄河晋陕峡谷壶口至龙门段北桑峪晚更新世以来黄土—土壤剖面样品与其他沉积物地球化学元素含量对比
沉积地层 | Fe2O3 (%) | SiO2 (%) | Al2O3 (%) | MgO (%) | CaO (%) | Na2O (%) | Ba (ppm) | Rb (ppm) | Sr (ppm) | Cu (ppm) | Cr (ppm) | Zr (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
古风成沙层上部 | 1.53 | 61.42 | 8.76 | 0.64 | 2.58 | 3.37 | 631.60 | 66.00 | 269.60 | 2.80 | 22.80 | 183.40 |
古风成沙层下部 | 1.58 | 59.08 | 8.47 | 0.68 | 2.72 | 3.15 | 603.90 | 65.90 | 272.60 | 2.30 | 25.90 | 166.90 |
马兰黄土层 | 4.12 | 55.51 | 11.31 | 1.92 | 5.96 | 1.46 | 498.80 | 84.60 | 180.30 | 17.60 | 59.20 | 256.60 |
现代河床相沙层 | 1.38 | 66.84 | 6.43 | 0.57 | 2.71 | 2.17 | 530.70 | 62.10 | 168.40 | 4.00 | 21.50 | 158.50 |
现代沙丘沙层 | 1.49 | 81.29 | 7.13 | 0.62 | 1.06 | 1.48 | 497.10 | 55.80 | 113.30 | 6.40 | 119.30 | 119.80 |
[1] | Dong Guangrong, Li Baosheng, Gao Shangyu, et al.Significances of the Quaternary ancient eolian sands in the Ordos Plateau. Chinese Science Bulletin, 1983, 28(16): 998-1001. |
[董光荣, 李保生, 高尚玉, 等. 鄂尔多斯高原第四纪古风成沙的发现及其意义. 科学通报, 1983, 28(16): 998-1001.] | |
[2] | Dong Guangrong, Li Baosheng, Gao Shangyu, et al.The Quaternary ancient eolian sands in the Ordos Plateau. Acta Geographica Sinica, 1983, 38(4): 341-347. |
[董光荣, 李保生, 高尚玉, 等. 鄂尔多斯高原的第四纪古风成沙. 地理学报, 1983, 38(4): 341-347.] | |
[3] |
Rognon P.Late Quaternary climatic reconstruction for the Maghreb (North Africa). Palaeogeography Palaeoclimatology Palaeoecology, 1987, 58(1/2): 11-34.
doi: 10.1016/0031-0182(87)90003-4 |
[4] |
Stokes S, Thomas D S G, Washington R. Multiple episodes of aridity in southern Africa since the last interglacial period. Nature, 1997, 388: 154-158.
doi: 10.1038/40596 |
[5] |
Sun Jiming, Ding Zhongli, Liu Tungsheng, et al.580000-year environmental reconstruction from aeolian deposits at the Mu Us Desert margin, China. Quaternary Science Reviews, 1999, 18: 1351-1364.
doi: 10.1016/S0277-3791(98)00086-9 |
[6] |
Yang Xiaoping, Preusser F, Radtke U.Late Quaternary environmental changes in the Taklamakan Desert, western China, inferred from OSL-dated lacustrine and aeolian deposits. Quaternary Science Reviews, 2006, 25(9/10): 923-932.
doi: 10.1016/j.quascirev.2005.06.008 |
[7] |
Zhou Yali, Lu Hayu, Zhang Jiafu, et al.Luminescence dating of sand-loess sequences and response of Mu Us and Otindag sand fields (north China) to climatic changes. Journal of Quaternary Science, 2009, 24(4): 336-344.
doi: 10.1002/jqs.1234 |
[8] |
He Zhong, Zhou Jie, Lai Zhongping, et al.Quartz OSL dating of sand dunes of Late Pleistocene in the Mu Us Desert in northern China. Quaternary Geochronology, 2010, 5(2/3): 102-106.
doi: 10.1016/j.quageo.2009.02.011 |
[9] |
Li Shenghua, Sun Jimin.Optical dating of Holocene dune sands from the Hulun Buir Desert, northeastern China. The Holocene, 2006, 16: 457-462.
doi: 10.1191/0959683606hl942rr |
[10] |
Long Hao, Lai Zhongping, Fuchs M, et al.Palaeodunes intercalated in loess strata from the western Chinese Loess Plateau: Timing and palaeoclimatic implications. Quaternary International, 2012, 263: 37-45.
doi: 10.1016/j.quaint.2010.12.030 |
[11] | Zhao Hui, Li Guoqiang, Sheng Yongwei, et al. Early-middle Holocene lake-desert evolution in northern Ulan Buh Desert, China. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 331/332: 31-38. |
[12] |
Li Guoqiang, Jin Ming, Chen Xuemei, et al.Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the middle Pleistocene based on sedimentology, chronology and proxy indexes. Quaternary Science Reviews, 2015, 128: 69-80.
doi: 10.1016/j.quascirev.2015.09.010 |
[13] |
Lepper K, Scott G F.Late Holocene aeolian activity in the Cimarron River valley of west-central Oklahoma. Geomorphology, 2005, 70: 42-52.
doi: 10.1016/j.geomorph.2005.03.010 |
[14] |
Veiga G D, Spalletti L A. The Upper Jurassic (Kimmeridgian) fluvial-aeolian systems of the southern Neuquén Basin, Argentina. Gondwana Research, 2007, 11: 286-302.
doi: 10.1016/j.gr.2006.05.002 |
[15] |
Kadlec J, Kocurek G, Mohrig D, et al.Response of fluvial, aeolian, and lacustrine systems to Late Pleistocene to Holocene climate change, Lower Moravian Basin, Czech Republic. Geomorphology, 2015, 232: 193-208.
doi: 10.1016/j.geomorph.2014.12.030 |
[16] | Jin Heling, Dong Guangrong, Liu Yuzhang, et al.The sandfield evolution and climatic changes in the middle course area of Yarlung Zangbo River in Tibet, China since 0. 80 Ma B.P. Journal of Desert Research, 1998, 18(2): 97-104. |
[靳鹤龄, 董光荣, 刘玉璋, 等. 0.8 Ma B.P.以来西藏雅鲁藏布江中游地区沙地演化和气候变化. 中国沙漠, 1998, 18(2): 97-104.] | |
[17] | Cao Xinguang, Wang Jianli.The environment information recorded in Zhangjiawan loess since 230 ka BP. Journal of Southwest University (Natural Science Edition), 2012, 34(4): 123-129. |
[曹新光, 王建力. 山陕峡谷张家湾230 ka BP以来黄土记录的环境信息. 西南大学学报(自然科学版), 2012, 34(4): 123-129.] | |
[18] | Bureau of Hydrology and Water Resources in the Middle Reaches of the Yellow River. Hydrology of the Middle Reaches of the Yellow River. Zhengzhou: Yellow River Conservancy Press, 2005. |
[黄河中游水文水资源局.黄河中游水文. 郑州: 黄河水利出版社, 2005.] | |
[19] | deMenocal P B. Culture responses to climate change during the late Holocene. Science, 2001, 292: 667-673. |
[20] |
Chen Feng, Yuan Yujiang, Wei Wenshou, et al.Variations of long-term Palmer drought index in recent 354 year in Yili based on tree-ring record. Plateau Meteorology, 2011, 30: 355-362.
doi: 10.3724/SP.J.1146.2006.01085 |
[21] |
Kang Shuyuan, Yang Bao, Qin Chun, et al.Extreme drought events in the years 1877-1878, and 1928, in the southeast Qilian Mountains and the air-sea coupling system. Quaternary International, 2013, 283: 85-92.
doi: 10.1016/j.quaint.2012.03.011 |
[22] |
Huang Jianping, Ji Mingxia, Liu Yuzhi, et al.An overview of arid and semi-arid climate change. Progressus Inquisitiones De Mutatione Climatis, 2013, 9(1): 9-14.
doi: 10.3969/j.issn.1673-1719.2013.01.002 |
[黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述. 气候变化研究进展, 2013, 9(1): 9-14.]
doi: 10.3969/j.issn.1673-1719.2013.01.002 |
|
[23] |
Gou Xiaohua, Deng Yang, Chen Fahu, et al.Tree ring based streamflow reconstruction for the upper Yellow River over the past 1234 years. Chinese Science Bulletin, 2010, 55(33): 3236-3243.
doi: 10.1017/S0004972710001772 |
[勾晓华, 邓洋, 陈发虎, 等. 黄河上游过去 1234年流量的树轮重建与变化特征分析. 科学通报, 2010, 55(33): 3236-3243.]
doi: 10.1017/S0004972710001772 |
|
[24] | Liu Tungsheng.Loess and Environment. Beijing: Science Press, 1985. |
[刘东生. 黄土与环境. 北京: 科学出版社, 1985.] | |
[25] | Rasmussen S O, Bigler M, Blockley S P E, et al. A framework for robust naming and correlation of past abrupt climatic changes during the recent glacial period based on three synchronised Greenland ice-cores. Quaternary Science Reviews, 2014, 106: 14-28. |
[26] | Wang Jian, Liu Zechuan, Jiang Wenying, et al.A relationship between magnetic susceptibility and grain-size and minerals, and their paleo-environmental implications. Acta Geographica Sinica, 1996, 51(2): 155-160. |
[王建, 刘泽纯, 姜文英, 等. 磁化率与粒度、矿物的关系及其古环境意义. 地理学报, 1996, 51(2): 155-160.] | |
[27] |
Shu Peixian, Niu Dongfeng, Li Baosheng, et al.Grain size characteristics of modern dune sand and its significance in the Mu Us Sandy Land, China. Journal of Desert Research, 2016, 36(1): 158-166.
doi: 10.7522/j.issn.1000-694X.2015.00058 |
[舒培仙, 牛东风, 李保生, 等. 毛乌素沙地现代沙丘沙的粒度特征及其意义. 中国沙漠, 2016, 36(1): 158-166.]
doi: 10.7522/j.issn.1000-694X.2015.00058 |
|
[28] |
Ha Si, Zhuang Yanmei, Wang Lei, et al.Grain-size variation on a transverse dune and response to wind direction changes on southern edge of Mu Us Desert. Progress in Geography, 2006, 25(6): 42-51.
doi: 10.11820/dlkxjz.2006.06.005 |
[哈斯, 庄燕美, 王蕾, 等. 毛乌素沙地南缘横向沙丘粒度分布及其对风向变化的响应. 地理科学进展, 2006, 25(6): 42-51.]
doi: 10.11820/dlkxjz.2006.06.005 |
|
[29] | Wu Zheng.Geomorphology of Wind-drift Sands and Their Controlled Engineering. Beijing: Science Press, 2003. |
[吴正. 风沙地貌与治沙工程学. 北京: 科学出版社, 2003.] | |
[30] | Xie Wenyu.Micrograph Atlas of Surface Texture Features of Quartz Sand in China. Beijing: China Ocean Press, 1985. |
[谢文予. 中国石英砂表面结构特征图谱. 北京: 海洋出版社, 1985.] | |
[31] | Wang Ying, Deonarine B.Model Atlas of Surface Textures of Quartz Sand. Beijing: Science Press, 1985. |
[王颖, 迪纳瑞尔B. 石英砂表面模式图集. 北京: 科学出版社, 1985.] | |
[32] |
Yang Lirong, Yue Leping, Gong Hujun.The environmental implication from microscopic texture of eolian sand of Hulun Buir dune land centred on late last glacial maximum and Holocene. Geographical Research, 2015, 34(6): 1066-1076.
doi: 10.11821/dlyj201506006 |
[杨利荣, 岳乐平, 弓虎军. 呼伦贝尔沙地末次冰盛期晚期至全新世风成沙表面矿物特征及环境意义. 地理研究, 2015, 34(6): 1066-1076.]
doi: 10.11821/dlyj201506006 |
|
[33] |
Ou Xianjiao, Li Baosheng, Jin Heling, et al.Sedimentary characteristics of paleo-eolian dune sands in Salawusu Formation of the Salawusu River valley. Acta Geographica Sinica, 2006, 61(9): 965-975.
doi: 10.3321/j.issn:0375-5444.2006.09.008 |
[欧先交, 李保生, 靳鹤龄, 等. 萨拉乌苏河流域萨拉乌苏组沙丘砂沉积特征. 地理学报, 2006, 61(9): 965-975.]
doi: 10.3321/j.issn:0375-5444.2006.09.008 |
|
[34] |
Hu Zhaochu, Gao Shan.Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 2008, 253: 205-221.
doi: 10.1016/j.chemgeo.2008.05.010 |
[35] | Deng Hongwen, Qian Kai.Sedimentary Geochemistry and Environmental Analysis. Lanzhou: Gansu Science and Technology Press, 1993. |
[邓宏文, 钱凯. 沉积地球化学与环境分析. 兰州: 甘肃科学技术出版社, 1993.] | |
[36] |
Mao Guangzhou, Liu Chiyang.Application of geochemistry in provenance and depositional setting analysis. Journal of Earth Sciences and Environment, 2011, 33(4): 338-342.
doi: 10.3969/j.issn.1672-6561.2011.04.002 |
[毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用. 地球科学与环境学报, 2011, 33(4): 338-342.]
doi: 10.3969/j.issn.1672-6561.2011.04.002 |
|
[37] | Wen Qizhong, Diao Guiyi, Pan Jingyu, et al.Comparison of average chemical composition of loess in Loess Plateau with Clark values of crust. Acta Pedologica Sinica, 1996, 33(3): 225-231. |
[文启忠, 刁桂仪, 潘景瑜, 等. 黄土高原黄土的平均化学成分与地壳克拉克值的类比. 土壤学报, 1996, 33(3): 225-231.] | |
[38] | Zhou Weijian, Li Xiaoqiang, Dong Guangrong, et al.The high-resolution peat record during Younger Dry as interval in desert-loess transition zone. Science China (Series D), 1996, 26(2): 118-124. |
[周卫建, 李小强, 董光荣, 等. 新仙女木期沙漠/黄土过渡带高分辨率泥炭记录: 东亚季风气候颤动的实例. 中国科学(D辑), 1996, 26(2): 118-124.] | |
[39] | Li Xiaoqiang, Zhou Weijian, An Zhisheng, et al.The palaeovegetation record of monsoon evolution in the desert-loess transition zone for the last 13 ka BP. Acta Botanica Sinica, 2000, 42(8): 868-872. |
[李小强, 周卫建, 安芷生, 等. 沙漠/黄土过渡带13 ka BP 以来季风演化的古植被记录. 植物学报, 2000, 42(8): 868-872.] | |
[40] |
Cheng Huizhong, Zhou Jie, Zhou Weijian.Monsoon climate in East Asia and desert change in eastern China during Younger Dryas period. Journal of Desert Research, 1998, 18(3): 202-204.
doi: 10.1088/0256-307X/15/11/025 |
[陈惠忠, 周杰, 周卫健. Younger Dryas时期东亚季风气候和中国东部沙区沙漠变化. 中国沙漠, 1998, 18(3): 202-204.]
doi: 10.1088/0256-307X/15/11/025 |
|
[41] | Yang Gensheng, Liu Yangxuan, Shi Peijun.Discussion on blown sand along the bank of Yellow River from Beichangtan to Hequ, Shanxi. Journal of Desert Research, 1987, 7(1): 43-54. |
[杨根生, 刘阳宣, 史培军. 黄河沿岸(北长滩—河曲段)风沙问题的初步探讨. 中国沙漠, 1987, 7(1): 43-54.] | |
[42] | Bagnold R A.The Physics of Blown Sand and Desert Dunes. 1941. Qian Ning, Lin Bingnan trans. Beijing: Science Press, 1959. |
[R A 拜格诺.风沙与荒漠沙漠物理学. 1941. 钱宁, 林秉南译. 北京: 科学出版社, 1959.] |
[1] | 高海东, 吴曌. 黄河头道拐—潼关区间植被恢复及其对水沙过程影响[J]. 地理学报, 2021, 76(5): 1206-1217. |
[2] | 黄春长. 若尔盖盆地河流古洪水沉积及其对黄河水系演变问题的启示[J]. 地理学报, 2021, 76(3): 612-625. |
[3] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[4] | 程亦菲, 夏军强, 周美蓉, 王英珍. 黄河下游游荡段排沙比对水沙条件与断面形态的响应[J]. 地理学报, 2021, 76(1): 127-138. |
[5] | 刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1): 139-152. |
[6] | 王彦君, 吴保生, 钟德钰. 黄河下游主槽断面形态对水沙变化响应过程的模拟[J]. 地理学报, 2020, 75(7): 1494-1511. |
[7] | 张俊华, 李国栋, 王岩松, 朱连奇, 赵文亮, 丁亚鹏. 黄河泥沙冲/沉积区土壤有机碳不同组分空间特征及变异机制[J]. 地理学报, 2020, 75(3): 558-570. |
[8] | 陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12): 2431-2436. |
[9] | 王彦君, 吴保生, 申冠卿. 1986-2015年小浪底水库运行前后黄河下游主槽调整规律[J]. 地理学报, 2019, 74(11): 2411-2427. |
[10] | 何磊,叶思源,袁红明,薛春汀. 黄河三角洲利津超级叶瓣时空范围的再认识[J]. 地理学报, 2019, 74(1): 146-161. |
[11] | 高超,王随继. 1990年以来黄河第一湾齐哈玛河段砾质网状河的演变特征[J]. 地理学报, 2018, 73(7): 1352-1364. |
[12] | 孙倩,于坤霞,李占斌,李鹏,张晓明,龚珺夫. 黄河中游多沙粗沙区水沙变化趋势及其主控因素的贡献率[J]. 地理学报, 2018, 73(5): 945-956. |
[13] | 贾彬彬,周亚利,赵军. 新疆阿尔泰山东段冰碛物光释光测年研究[J]. 地理学报, 2018, 73(5): 957-972. |
[14] | 潘威, 郑景云, 满志敏. 1766-2000年黄河上中游汛期径流量波动特征及其与PDO关系[J]. 地理学报, 2018, 73(11): 2053-2063. |
[15] | 包为民, 沈丹丹, 倪鹏, 周俊伟, 孙逸群. 滑动平均差检测法的提出及验证[J]. 地理学报, 2018, 73(11): 2075-2085. |