地理学报 ›› 2016, Vol. 71 ›› Issue (5): 807-816.doi: 10.11821/dlxb201605009
黄日超(), 陈喜(
), 孙一萌, 高满, 程勤波, 张永生
收稿日期:
2016-01-19
修回日期:
2016-03-24
出版日期:
2016-05-25
发布日期:
2016-05-25
作者简介:
作者简介:黄日超(1990-), 男, 江西石城人, 硕士, 主要从事生态水文过程模拟研究。E-mail:
基金资助:
Richao HUANG(), Xi CHEN(
), Yimeng SUN, Man GAO, Qinbo CHENG, Yongsheng ZHANG
Received:
2016-01-19
Revised:
2016-03-24
Published:
2016-05-25
Online:
2016-05-25
Supported by:
摘要:
由于土壤特性和植被分布具有区域性,不同流域土壤有效厚度存在差异,进而影响土壤蓄水容量和陆面水碳等通量的时空分布。以湿润地区的东江流域,湿润、半湿润地区的淮河流域以及半湿润、半干旱地区的泾河流域为研究对象,采用LPJ动态植被模型,以水量平衡为目标率定土壤有效厚度,分析不同气候区典型流域土壤有效厚度以及土壤蓄水容量和陆面水碳通量(径流量R,实际蒸散发量ET和净初级生产力NPP)变化。结果表明:东江、淮河、泾河流域的土壤有效厚度分别为70 cm、90 cm和140 cm,土壤有效厚度和蓄水容量随着气候干旱程度增加而增加;土壤有效厚度的修正有效减低该模型水平衡误差,对陆面水碳通量模拟结果的影响程度与区域气候条件有关,湿润地区多年平均径流深和实际蒸散发修正前后变化显著,半湿润、半干旱地区NPP变化显著。研究成果为提高LPJ模型在不同气候区应用可靠性提供参考依据。
黄日超, 陈喜, 孙一萌, 高满, 程勤波, 张永生. 流域土壤有效厚度水平衡验证及其对陆面水碳通量模拟的影响[J]. 地理学报, 2016, 71(5): 807-816.
Richao HUANG, Xi CHEN, Yimeng SUN, Man GAO, Qinbo CHENG, Yongsheng ZHANG. Validation of watershed soil effective depth based on water balance and its effect on simulation of land surface water-carbon flux[J]. Acta Geographica Sinica, 2016, 71(5): 807-816.
表3
1956-2000年土壤有效厚度修正前后流域水、碳通量对比结果
泾河 | 淮河 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
通量 | 实测 (mm) | 未修正 | 修正后 | 实测 (mm) | 未修正 | 修正后 | |||||||||||
模拟 (mm) | ER (%) | Cv (%) | 模拟 (mm) | ER (%) | Cv (%) | 模拟 (mm) | ER (%) | Cv (%) | 模拟 (mm) | ER (%) | Cv (%) | ||||||
R | 40 | 44 | 10.0 | 69.0 | 40 | 0.1 | 73.0 | 256 | 247 | 3.0 | 38.3 | 256 | 0.1 | 39.5 | |||
ET | 414 | 406 | 0.98 | 11.5 | 410 | 0.97 | 11.6 | 608 | 611 | 0.5 | 6.8 | 603 | 0.82 | 7.3 | |||
NPP | 502 | 17.4 | 513 | 17.4 | 538 | 12.0 | 555 | 12.1 | |||||||||
东江 | |||||||||||||||||
通量 | 实测 (mm) | 未修正 | 修正后 | ||||||||||||||
模拟 (mm) | ER (%) | Cv (%) | 模拟 (mm) | ER (%) | Cv (%) | ||||||||||||
R | 947 | 891 | 5.9 | 29.5 | 941 | 0.1 | 31.0 | ||||||||||
ET | 880 | 931 | 5.56 | 4.0 | 882 | 0.23 | 4.7 | ||||||||||
NPP | 622 | 8.7 | 621 | 13.7 |
[1] | Yang Dawen, Lei Huimin, Cong Zhentao.Overview of the research status in interaction between hydrological processes and vegetation in catchment. Journal of Hydraulic Engineering, 2010(10): 1142-1149. |
[杨大文, 雷慧闽, 丛振涛. 流域水文过程与植被相互作用研究现状评述. 水利学报, 2010(10): 1142-1149.] | |
[2] | Sun Guodong. Simulation of potential vegetation distribution and estimation of carbon flux in China from1981 to 1998 with LPJ Dynamic Global Vegetation Model. Climatic and Environmental Research, 2009(4): 341-351. |
[孙国栋. LPJ模型对1981-1998年中国区域潜在植被分布和碳通量的模拟. 气候与环境研究, 2009(4): 341-351.] | |
[3] | Yin Yunhe, Wu Shaohong, Zhao Dongsheng, et al.Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 1981-2010. Acta Geographica Sinica, 2012, 67(11): 1471-1481. |
[尹云鹤, 吴绍洪, 赵东升, 等. 1981-2010年气候变化对青藏高原实际蒸散的影响. 地理学报, 2012, 67(11): 1471-1481.] | |
[4] | Wang Xufeng, Ma Mingguo.Carbon and water fluxes of cornfield simulated with LPJ mode. Advances in Earth Science, 2009, 24(7): 734-740. |
[王旭峰, 马明国. 基于LPJ模型的制种玉米碳水通量模拟研究. 地球科学进展, 2009, 24(7): 734-740.] | |
[5] |
Gerten D, Schaphoff S, Haberlandt U, et al.Terrestrial vegetation and water balance: Hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 2004, 286(1-4): 249-270.
doi: 10.1016/j.jhydrol.2003.09.029 |
[6] |
Bloh W V, Rost S, Gerten D, et al Efficient parallelization of a dynamic global vegetation model with river routing. Environmental Modelling & Software, 2010, 25(6): 685-690.
doi: 10.1016/j.envsoft.2009.11.012 |
[7] |
Ukkola A M, Murray S J.Hydrological evaluation of the LPX dynamic global vegetation model for small river catchments in the UK. Hydrological Processes, 2014, 28(4): 1939-1950.
doi: 10.1002/hyp.9735 |
[8] |
Sitch S, Smith B,Prentice I C, et.al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9(2): 161-185.
doi: 10.1046/j.1365-2486.2003.00569.x pmid: 1703012 |
[9] | Ni Jian.BIOME models: Main principles and applications. Acta Phytoecologica Sinica, 2002(4): 481-488. |
[倪健.BIOME系列模型: 主要原理与应用. 植物生态学报, 2002(4): 481-488.] | |
[10] | Pan Y, McGuire A D, Melillo J M, et al. A biogeochemistry - based dynamic vegetation model and its application along a moisture gradient in the continental United States. Journal of Vegetation Science, 2002, 13(3): 369-382. |
[11] | Joos F, Prentice I C, Sitch S, et.al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles, 2001, 15(4): 891-907. |
[12] |
Wania R, Ross I, Prentice I C.Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geoscientific Model Development, 2010, 3(2): 565-584.
doi: 10.5194/gmd-3-565-2010 |
[13] |
Reager J T, Famiglietti J S.Characteristic mega-basin water storage behavior using GRACE. Water Resources Research, 2013, 49(6): 3314-3329.
doi: 10.1002/wrcr.20264 pmid: 24563556 |
[14] | Ladson T, Lander J, Western A, et al.Estimating extractable soil moisture content for Australian soils. Cooperative Research Centre for Catchment Hydrology, 2004. |
[15] | FAO UNESCO.Soil Map of The World Legend and Volumes. UNESCO P. |
[16] |
Dunne K A, Willmott C J.Global distribution of plant-extractable water capacity of soil. International Journal of Climatology, 1996, 16(8): 841-859.
doi: 10.1002/(SICI)1097-0088(199608)16:8<841::AID-JOC60>3.0.CO;2-8 |
[17] | Zhao Renjun.Watershed Hydrological Modeling: Xinanjiang Model and Northern Shaanxi Model. Beijing: China Water Power Press, 1984: 117. |
[赵人俊. 流域水文模拟: 新安江模型与陕北模型. 北京: 水利电力出版社, 1984: 117.] | |
[18] |
Milly P C D, Dunne K A. Sensitivity of the global water cycle to the water-holding capacity of land. Journal of Climate, 1994, 7(4): 506-526.
doi: 10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2 |
[19] |
Feddema J J.Estimated impacts of soil degradation on the African water balance and climate. Climate Research, 1998, 10(2): 127-141.
doi: 10.3354/cr010127 |
[20] | Goward S N, Xue Y, Czajkowski K P.Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sensing of Environment, 2002, 79(2/3): 225-242. |
[21] |
Chen Caocao, Xie Gaodi, Zhen Lin, et al.Analysis of Jinghe watershed vegetation dynamic sand evaluation of its relation to precipitation. Acta Ecologica Sinica, 2008, 28(3): 925-938.
doi: 10.3321/j.issn:1000-0933.2008.03.004 |
[陈操操, 谢高地, 甄霖, 等. 泾河流域植被覆盖动态变化特征及其与降雨的关系. 生态学报, 2008, 28(3): 925-938.]
doi: 10.3321/j.issn:1000-0933.2008.03.004 |
|
[22] | Wang Zhaoli.Effects of climatic change and LUCC on hydrological system in the East River Basin, South China [D]. Guangzhou: Sun Yat-senUniversity, 2007. |
[王兆礼. 气候与土地利用变化的流域水文系统响应: 以东江流域为例[D]. 广州: 中山大学, 2007.] | |
[23] | Pan Meihui, Wu Yongqiu.The spatial variation of geology, topography and soil characteristics in the Dongjiang watershed//Proceedings of the 2011 Annual Meeting of the Geographical Society of China, 2011: 1. |
[潘美慧, 伍永秋.东江流域地质、地貌和土壤特征及空间异质性分析//中国地理学会2011年学术年会论文摘要集, 2011: 1.] | |
[24] | Zobler L.A world soil file for global climate modeling. NASA Tech. Memo. 87802, NASA, New York, 1986: 33. |
[25] | McGuire A D, Sitch S, Clein J S, etal. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 2001, 15(1): 183-206. |
[26] |
Lü Leting, Peng Qiuzhi, Guo Yuanyuan, et al.Runoff simulation of Dongjiang River Basin based on the soil and water assessment tool. Journal of Natural Resources, 2014, 29(10): 1746-1757.
doi: 10.11849/zrzyxb.2014.10.010 |
[吕乐婷, 彭秋志, 郭媛媛, 等. 基于SWAT模型的东江流域径流模拟. 自然资源学报, 2014, 29(10): 1746-1757.]
doi: 10.11849/zrzyxb.2014.10.010 |
[1] | 崔林丽,史军,肖风劲. 气候要素及El Niño/La Niña事件对中国陆地NPP变化的影响[J]. 地理学报, 2018, 73(1): 54-66. |
[2] | 孙庆龄, 李宝林, 李飞, 张志军, 丁玲玲, 张涛, 许丽丽. 三江源植被净初级生产力估算研究进展[J]. 地理学报, 2016, 71(9): 1596-1612. |
[3] | 张镱锂, 胡忠俊, 祁威, 吴雪, 摆万奇, 李兰晖, 丁明军, 刘林山, 王兆锋, 郑度. 基于NPP数据和样区对比法的青藏高原自然保护区保护成效分析[J]. 地理学报, 2015, 70(7): 1027-1040. |
[4] | 杨晓楠, 李晶, 秦克玉, 李婷, 刘婧雅. 关中—天水经济区生态系统服务的权衡关系[J]. 地理学报, 2015, 70(11): 1762-1773. |
[5] | 张镱锂, 祁威, 周才平, 丁明军, 刘林山, 高俊刚, 摆万奇, 王兆锋, 郑度. 青藏高原高寒草地净初级生产力(NPP)时空分异[J]. 地理学报, 2013, 68(9): 1197-1211. |
[6] | 尹云鹤, 吴绍洪, 赵东升, 郑度, 潘韬. 1981-2010 年气候变化对青藏高原实际蒸散的影响[J]. 地理学报, 2012, 67(11): 1471-1481. |
[7] | 高志强,刘纪远,曹明奎,李克让,陶波. 土地利用和气候变化对区域净初级生产力的影响[J]. 地理学报, 2004, 59(4): 581-591. |
[8] | 周才平,欧阳华,王勤学,渡边正孝,孙青强. 青藏高原主要生态系统净初级生产力的估算[J]. 地理学报, 2004, 59(1): 74-79. |
[9] | 陶波,李克让,邵雪梅,曹明奎. 中国陆地净初级生产力时空特征模拟[J]. 地理学报, 2003, 58(3): 372-380. |
[10] | 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379-389. |
[11] | 朱志辉. 我国自然植被生产力功能和地带性结构的气候耦合[J]. 地理学报, 1996, 51(s1): 66-72. |