地理学报 ›› 2015, Vol. 70 ›› Issue (3): 461-475.doi: 10.11821/dlxb201503009
杨俊1,2(), 解鹏1, 席建超2(
), 葛全胜2, 李雪铭1, 马占东1
收稿日期:
2014-06-10
修回日期:
2015-01-10
出版日期:
2015-03-20
发布日期:
2015-03-20
作者简介:
作者简介:杨俊(1978-), 男, 湖北孝昌, 博士后, 副教授, 主要从事区域地表过程、城市人居环境与地理信息系统应用研究。E-mail:
基金资助:
Jun YANG1,2(), Peng XIE1, Jianchao XI2(
), Quansheng GE2, Xueming LI1, Zhandong MA1
Received:
2014-06-10
Revised:
2015-01-10
Published:
2015-03-20
Online:
2015-03-20
Supported by:
摘要:
元胞自动机模型已经成为模拟土地利用变化的重要方法。传统土地模拟方法中侧重于通过分析影响土地利用变化的因素来构建预测模型,较少从土地利用类型变化及其相互作用的空间角度来关注模型构建。本文以1998年、2004年和2009年1:10000土地利用数据,利用Python语言结合GDAL与Numpy类库实现局部土地利用竞争的元胞自动机模型原型开发,并用于模拟大连市经济技术开发区1998-2009年土地利用变化模拟。研究结果:① 建立了发掘多地类之间相互作用关系的试验方法,研究适用于具有明确物理意义的多地类元胞自动机模拟模型;② 该模型具有好的模拟精度,对建设用地、农用地和林地等3种不同类型用地进行同时模拟,其对应Kappa系数分别为0.762,0.634和0.678;③ 该模型建立了研究不同种地类协调作用的基本方法,可以用于进一步研究土地利用变化地类之间驱动原理。
杨俊, 解鹏, 席建超, 葛全胜, 李雪铭, 马占东. 基于元胞自动机模型的土地利用变化模拟——以大连经济技术开发区为例[J]. 地理学报, 2015, 70(3): 461-475.
Jun YANG, Peng XIE, Jianchao XI, Quansheng GE, Xueming LI, Zhandong MA. LUCC simulation based on the cellular automata simulation: A case study of Dalian Economic and Technological Development Zone[J]. Acta Geographica Sinica, 2015, 70(3): 461-475.
表3
土地利用类型流转统计表
输入 | 邻域 | 输出 | 邻域地类元胞数量 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
地类 | 地类 | 地类 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
B | B | B | 146 | 366 | 747 | 1419 | 2302 | 4799 | 3282 | 3724 | 19126 |
B | B | A | 76 | 133 | 213 | 332 | 419 | 355 | 210 | 140 | 264 |
B | B | F | 78 | 122 | 212 | 278 | 367 | 362 | 253 | 219 | 377 |
合计 | 300 | 621 | 1172 | 2029 | 3088 | 5516 | 3745 | 4083 | 19767 | ||
B | A | B | 29519 | 1954 | 1498 | 1316 | 861 | 470 | 215 | 58 | 20 |
B | A | A | 505 | 221 | 299 | 372 | 346 | 209 | 123 | 39 | 28 |
B | A | F | 1196 | 354 | 231 | 203 | 152 | 76 | 32 | 16 | 8 |
合计 | 31220 | 2529 | 2028 | 1891 | 1359 | 755 | 370 | 113 | 56 | ||
B | F | B | 30476 | 2305 | 1292 | 959 | 500 | 228 | 101 | 42 | 8 |
B | F | A | 1317 | 430 | 221 | 89 | 44 | 28 | 7 | 5 | 1 |
B | F | F | 1134 | 299 | 255 | 231 | 168 | 81 | 65 | 26 | 9 |
合计 | 32927 | 3034 | 1768 | 1279 | 712 | 337 | 173 | 73 | 18 | ||
A | B | B | 3643 | 785 | 640 | 614 | 319 | 191 | 98 | 44 | 28 |
A | B | A | 23630 | 2871 | 1741 | 1279 | 535 | 249 | 90 | 38 | 13 |
A | B | F | 5545 | 740 | 394 | 255 | 120 | 37 | 16 | 4 | 5 |
合计 | 32818 | 4396 | 2775 | 2148 | 974 | 477 | 204 | 86 | 46 | ||
A | A | B | 145 | 238 | 420 | 650 | 887 | 1128 | 917 | 862 | 1115 |
A | A | A | 78 | 294 | 701 | 1459 | 2616 | 3985 | 4727 | 6139 | 10447 |
A | A | F | 170 | 261 | 404 | 693 | 943 | 1100 | 1055 | 1121 | 1369 |
合计 | 393 | 793 | 1525 | 2802 | 4446 | 6213 | 6699 | 8122 | 12931 | ||
A | F | B | 2821 | 1353 | 886 | 586 | 358 | 199 | 104 | 40 | 15 |
A | F | A | 15337 | 6555 | 3900 | 2385 | 1249 | 593 | 287 | 116 | 24 |
A | F | F | 2135 | 1314 | 1074 | 928 | 704 | 454 | 255 | 170 | 82 |
合计 | 20293 | 9222 | 5860 | 3899 | 2311 | 1246 | 646 | 326 | 121 | ||
F | B | B | 3542 | 776 | 591 | 580 | 328 | 126 | 55 | 26 | 5 |
F | B | A | 3816 | 530 | 349 | 215 | 100 | 41 | 21 | 5 | 0 |
F | B | F | 35875 | 1801 | 996 | 740 | 299 | 58 | 20 | 4 | 0 |
合计 | 43233 | 3107 | 1936 | 1535 | 727 | 225 | 96 | 35 | 5 | ||
F | A | B | 3070 | 823 | 626 | 531 | 399 | 269 | 178 | 99 | 34 |
F | A | A | 544 | 460 | 553 | 685 | 713 | 650 | 677 | 512 | 283 |
F | A | F | 29816 | 3347 | 2200 | 1658 | 1125 | 777 | 471 | 295 | 104 |
合计 | 33430 | 4630 | 3379 | 2874 | 2237 | 1696 | 1326 | 906 | 421 | ||
F | F | B | 213 | 408 | 467 | 540 | 689 | 781 | 638 | 691 | 1602 |
F | F | A | 532 | 800 | 818 | 664 | 665 | 567 | 424 | 288 | 319 |
F | F | F | 216 | 508 | 762 | 1116 | 1757 | 2612 | 2790 | 3926 | 26106 |
合计 | 961 | 1716 | 2047 | 2320 | 3111 | 3960 | 3852 | 4905 | 28027 |
表4
土地利用转换方向与概率表
基础 | 邻域 | 输出 | 概率 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
地类 | 地类 | 地类 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
B | B | B | 0.487 | 0.589 | 0.637 | 0.699 | 0.745 | 0.870 | 0.876 | 0.912 | 0.968 |
B | B | A | 0.253 | 0.214 | 0.182 | 0.164 | 0.136 | 0.064 | 0.056 | 0.034 | 0.013 |
B | B | F | 0.260 | 0.196 | 0.181 | 0.137 | 0.119 | 0.066 | 0.068 | 0.054 | 0.019 |
B | A | B | 0.946 | 0.773 | 0.739 | 0.696 | 0.634 | 0.623 | 0.581 | 0.513 | 0.357 |
B | A | A | 0.016 | 0.087 | 0.147 | 0.197 | 0.255 | 0.277 | 0.332 | 0.345 | 0.500 |
B | A | F | 0.038 | 0.140 | 0.114 | 0.107 | 0.112 | 0.101 | 0.086 | 0.142 | 0.143 |
B | F | B | 0.926 | 0.760 | 0.731 | 0.750 | 0.702 | 0.677 | 0.584 | 0.575 | 0.444 |
B | F | A | 0.040 | 0.142 | 0.125 | 0.070 | 0.062 | 0.083 | 0.040 | 0.068 | 0.056 |
B | F | F | 0.034 | 0.099 | 0.144 | 0.181 | 0.236 | 0.240 | 0.376 | 0.356 | 0.500 |
A | B | B | 0.111 | 0.179 | 0.231 | 0.286 | 0.328 | 0.400 | 0.480 | 0.512 | 0.609 |
A | B | A | 0.720 | 0.653 | 0.627 | 0.595 | 0.549 | 0.522 | 0.441 | 0.442 | 0.283 |
A | B | F | 0.169 | 0.168 | 0.142 | 0.119 | 0.123 | 0.078 | 0.078 | 0.047 | 0.109 |
A | A | B | 0.369 | 0.300 | 0.275 | 0.232 | 0.200 | 0.182 | 0.137 | 0.106 | 0.086 |
A | A | A | 0.198 | 0.371 | 0.460 | 0.521 | 0.588 | 0.641 | 0.706 | 0.756 | 0.808 |
A | A | F | 0.433 | 0.329 | 0.265 | 0.247 | 0.212 | 0.177 | 0.157 | 0.138 | 0.106 |
A | F | B | 0.139 | 0.147 | 0.151 | 0.150 | 0.155 | 0.160 | 0.161 | 0.123 | 0.124 |
A | F | A | 0.756 | 0.711 | 0.666 | 0.612 | 0.540 | 0.476 | 0.444 | 0.356 | 0.198 |
A | F | F | 0.105 | 0.142 | 0.183 | 0.238 | 0.305 | 0.364 | 0.395 | 0.521 | 0.678 |
F | B | B | 0.082 | 0.250 | 0.305 | 0.378 | 0.451 | 0.560 | 0.573 | 0.743 | 1.00 |
F | B | A | 0.088 | 0.171 | 0.180 | 0.140 | 0.138 | 0.182 | 0.219 | 0.143 | 0.00 |
F | B | F | 0.830 | 0.580 | 0.514 | 0.482 | 0.411 | 0.258 | 0.208 | 0.114 | 0.00 |
F | A | B | 0.092 | 0.178 | 0.185 | 0.185 | 0.178 | 0.159 | 0.134 | 0.109 | 0.081 |
F | A | A | 0.016 | 0.099 | 0.164 | 0.238 | 0.319 | 0.383 | 0.511 | 0.565 | 0.672 |
F | A | F | 0.892 | 0.723 | 0.651 | 0.577 | 0.503 | 0.458 | 0.355 | 0.326 | 0.247 |
F | F | B | 0.222 | 0.238 | 0.228 | 0.233 | 0.221 | 0.197 | 0.166 | 0.141 | 0.057 |
F | F | A | 0.554 | 0.466 | 0.400 | 0.286 | 0.214 | 0.143 | 0.110 | 0.059 | 0.011 |
F | F | F | 0.225 | 0.296 | 0.372 | 0.481 | 0.565 | 0.660 | 0.724 | 0.800 | 0.931 |
表5
局部土地利用竞争潜力方程系数矩阵
ToB | ToA | ToF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | A | F | B | A | F | B | A | F | ||||
B | a | 0.059 | -0.059 | -0.047 | -0.028 | 0.053 | -0.005 | -0.028 | 0.006 | 0.053 | ||
b | 0.459 | 0.945 | 0.920 | 0.263 | -0.024 | 0.102 | 0.263 | 0.079 | -0.023 | |||
A | a | 0.060 | -0.034 | -0.002 | -0.047 | 0.070 | -0.065 | -0.013 | -0.034 | 0.066 | ||
b | 0.048 | 0.380 | 0.154 | 0.773 | 0.211 | 0.852 | 0.179 | 0.380 | -0.006 | |||
F | a | 0.098 | -0.006 | -0.019 | -0.005 | 0.081 | -0.069 | -0.093 | -0.075 | 0.087 | ||
b | -0.007 | 0.176 | 0.282 | 0.167 | -0.075 | 0.592 | 0.840 | 0.899 | 0.126 |
[1] | Huang Qingxu, Shi Peijun, He Chunyang et al. Modelling land use change dynamics under different aridification scenarios in northern China. Acta Geographica Sinica, 2006, 61(12): 1299-1310. |
[黄庆旭, 史培军, 何春阳等. 中国北方未来干旱化情景下的土地利用变化模拟. 地理学报, 2006, 61(12): 1299-1310.] | |
[2] | Lei Shi, Quan Bing, Ouyang Hong et al. Prediction and comparison of the land use changes in Changsha city and Quanzhou city based on Markov model. Research of Soil and Water Conservation, 2013, 20(6): 224-229. |
[雷师, 全斌, 欧阳鸿等. 基于Markov模型的长沙市和泉州市土地利用变化预测及对比研究. 水土保持研究, 2013, 20(6): 224-229.] | |
[3] | Liu Xiaoping, Li Xia, Chen Yimin et al. Agent-based model of residential location. Acta Geographic Sinica, 2010, 65(6): 695-707. |
[刘小平, 黎夏, 陈逸敏等. 基于多智能体的居住区位空间选择模型. 地理学报, 2010, 65(6): 695-707.] | |
[4] | Liang Youjia, Xu Zhongmin, Zhong Fanglei.Land use scenario analyses by based on system dynamic model and CLUE-S model at regional scale: A case study of Ganzhou district of Zhangye city. Geographical Research, 2011, 30(3): 564-576. |
[梁友嘉, 徐中民, 钟方雷. 基于SD和CLUE-S模型的张掖市甘州区土地利用情景分析. 地理研究, 2011, 30(3): 564-576.] | |
[5] | He Chunyang, Chen Jin,Shi Peijun et al. Study on the spatial dynamic city model based on CA (cellular automata) model. Advance In Earth Sciences, 2002, 17(2): 188-195. |
[何春阳, 陈晋, 史培军等. 基于CA的城市空间动态模型研究. 地球科学进展, 2002, 17(2): 188-195.] | |
[6] | Neumann J V.Theory of self-reproducing automata. University of Illinois, 1966. |
[7] | Wolfram S.Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena, 1984, 10(1): 1-35. |
[8] | Wolfram S.A new kind of science. Urbana-Champaign, IL: Wolfram Media, 2002. |
[9] | Lambin E F, Geist H, Rindfuss R R.Land-Use and Land-Cover Change: Springer Berlin Heidelberg, 2006. |
[10] | Wang Y, Li S.Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Comput. Geosci-Uk, 2011, 37(2): 111-121. |
[11] | Jokar Arsanjani J, Helbich M, Kainz W et al. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 265-275. |
[12] | Sun J, Zhang L, Peng C et al. CA-based urban land use prediction model: a case study on orange county, Florida, US. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(6): 85-92. |
[13] | Long Ying, Han Haoying, Mao Qizhi.Establishing urban growth boundaries using constrained CA. Acta Geographica Sinica, 2009, 64(8): 999-1008. |
[龙瀛, 韩昊英, 毛其智. 利用约束性CA制定城市增长边界. 地理学报, 2009, 64(8): 999-1008.] | |
[14] | Qiu Bingwen, Chen Chongcheng.Land use change simulation model based on MCDM and CA and its application. Acta Geographica Sinica, 2008, 63(2): 165. |
[邱炳文, 陈崇成. 基于多目标决策和CA模型的土地利用变化预测模型及其应用. 地理学报, 2008, 63(2): 165-174.] | |
[15] | Berjak Stephen G., Hearne John W.An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecological Modelling, 2002, 148(2): 133-151. |
[16] | Perry G.Current approaches to modelling the spread of wildland fire: A review. Progress in Physical Geography, 1998, 22(2): 222-245. |
[17] | Quartieri J, Mastorakis N E, Iannone G et al. A cellular automata model for fire spreading prediction. Latest Trends on Urban Planning and Transportation, 2010: 173-178. |
[18] | Yassemi S, Dragićević S, Schmidt M.Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling, 2008, 210(1/2): 71-84. |
[19] | Muci A L, Jorquera M A, Ávila Á I et al. A combination of cellular automata and agent-based models for simulating the root surface colonization by bacteria. Ecological Modelling, 2012, 274: 1-10. |
[20] | Rasmussen R, Hamilton G.An approximate Bayesian computation approach for estimating parameters of complex environmental processes in a cellular automata. Environmental Modelling & Software, 2012, 29(1): 1-10. |
[21] | Perez L, Dragicevic S.Landscape-level simulation of forest insect disturbance: Coupling swarm intelligent agents with GIS-based cellular automata model. Ecological Modelling, 2012: 53-64. |
[22] | Yang J, Wang Z, Yang D et al. Ecological risk assessment of genetically modified crops based on cellular automata modeling. Biotechnology Advances, 2009, 27(6): 1132-1136. |
[23] | Han Y, Ko S.Analysis of a cellular automaton model for car traffic with a junction. Theoretical Computer Science, 2012: 54-67. |
[24] | Jin X, White R.An agent-based model of the influence of neighbourhood design on daily trip patterns. Computers, Environment and Urban Systems, 2012, 36(5): 398-411. |
[25] | Lárraga M E, Alvarez-Icaza L.Cellular automaton model for traffic flow based on safe driving policies and human reactions. Physica A: Statistical Mechanics and its Applications, 2010, 389(23): 5425-5438. |
[26] | Zhou Chenghu, Sun Zhanli, Xie Yichun.The Research of Geography Cellular Automata. Beijing: Science Press, 1999: 1-163. |
[周成虎, 孙战利, 谢一春. 地理元胞自动机研究. 北京: 科学出版社, 1999: 1-163.] | |
[27] | He Chunyang, Shi Peijun, Chen Jin et al. A study on land use/cover change in Beijing area. Geographical Research, 2001, 20(6): 679-687. |
[何春阳, 史培军, 陈晋等. 北京地区土地利用/覆盖变化研究. 地理研究, 2001, 20(6): 679-687.] | |
[28] | Lauf S, Haase D, Hostert Pet al. Uncovering land-use dynamics driven by human decision-making: A combined model approach using cellular automata and system dynamics. Environmental Modelling & Software, 2012, 27/28: 71-82. |
[29] | Mitsova D, Shuster W, Wang X.A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape And Urban Planning, 2011, 99(2): 141-153. |
[30] | Robinson D T, Murray-Rust D, Rieser V et al. Modelling the impacts of land system dynamics on human well-being: Using an agent-based approach to cope with data limitations in Koper, Slovenia. Computers, Environment and Urban Systems, 2012, 36(2): 164-176. |
[31] | Pan Y, Roth A, Yu Z et al. The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Computers Environment and Urban Systems, 2010, 34(5): 400-408. |
[32] | Yu W, Zang S, Wu C et al. Analyzing and modeling land use land cover change (LUCC) in the Daqing City, China. Applied Geography, 2011, 31(2): 600-608. |
[33] | Li X, Lao C, Liu Y et al. Early warning of illegal development for protected areas by integrating cellular automata with neural networks. Journal of Environmental Management, 2013, 130: 106-116. |
[34] | Li X, Yang Q, Liu X.Discovering and evaluating urban signatures for simulating compact development using cellular automata. Landscape and Urban Planning, 2008, 86(2): 177-186. |
[35] | Liu X, Li X, Shi X et al. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 2008, 211(1/2): 169-181. |
[36] | Li Xia, Yeh Anthony Gar-On. Cellular automata for simulating complex land use systems using neural networks. Geographical Research, 2005, 24(1): 19-27. |
[黎夏, 叶嘉安. 基于神经网络的元胞自动机及模拟复杂土地利用系统. 地理研究, 2005, 24(1): 19-27.] | |
[37] | Li Xia, Yeh Anthony Gar-On. Optimal spatial search using genetic algorithms and GIS. Acta Geographica Sinica, 2004, 59(5): 745-753. |
[黎夏, 叶嘉安. 遗传算法和GIS结合进行空间优化决策. 地理学报, 2004, 59(5): 745-753.] | |
[38] | Li Xia, Liu Xiaoping.Case-base cellular automaton for simulation urban development in a large complex region. Acta Geographica Sinica, 2007, 62(10): 1097-1109. |
[黎夏, 刘小平. 基于案例推理的元胞自动机及大区域城市演变模拟. 地理学报, 2007, 62(10): 1097-1109.] | |
[39] | Li Xia, Yeh Anthony Gar-On. Neural-network-based cellular automata for realistic and idealized urban simulation. Acta Geographica Sinica, 2002, 57(2): 159-166. |
[黎夏, 叶嘉安. 基于神经网络的单元自动机CA及真实和忧化的城市模拟. 地理学报, 2002, 57(2): 159-166.] | |
[40] | Al-Kheder S, Wang J, Shan J.Fuzzy inference guided cellular automata urban-growth modelling using multi-temporal satellite images. International Journal of Geographical Information Science, 2008, 22(11/12): 1271-1293. |
[41] | Feng Yongjiu, Liu Miaolong, Tong Xiaohua et al. Kernel principal components analysis based cellular model for restructuring and predicting urban evolution. Acta Geographica Sinica, 2010, 65(6): 665-675. |
[冯永玖, 刘妙龙, 童小华等. 基于核主成分元胞模型的城市演化重建与预测. 地理学报, 2010, 65(6): 665-675.] | |
[42] | Santé I, García A M,Miranda D et al. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 2010, 96(2): 108-122. |
[43] | Maria De Almeida C, Batty M, Vieira Monteiro A Met al. Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Computers, Environment and Urban Systems, 2003, 27(5): 481-509. |
[44] | Gong J, Liu Y, Chen W.Land suitability evaluation for development using a matter-element model: A case study in Zengcheng, Guangzhou, China. Land Use Policy, 2012, 29(2): 464-472. |
[45] | Yang X, Zheng X, Lv L.A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling, 2012, 233: 11-19. |
[46] | Moreno N, Wang F, Marceau D J.Implementation of a dynamic neighborhood in a land-use vector-based cellular automata model. Computers, Environment and Urban Systems, 2009, 33(1): 44-54. |
[47] | Shafizadeh Moghadam H, Helbich M.Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 2013, 40: 140-149. |
[48] | Fan Qiang, Yang Jun, Wu Nan et al. Landscape patterns changes and dynamic simulation of coastal tourism town: A case study of Dalian Jinshitan National Tourist Holiday Resort. Scientia Geographica Sinica, 2013, 33(12): 1467-1475. |
[范强, 杨俊, 吴楠等. 海岸旅游小镇景观格局演变与动态模拟: 以大连市金石滩国家旅游度假区为例. 地理科学, 2013, 33(12): 1467-1475.] |
[1] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[2] | 张永强, 孔冬冬, 张选泽, 田静, 李聪聪. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报, 2021, 76(3): 584-594. |
[3] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[4] | 吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3): 713-725. |
[5] | 马海涛. 知识流动空间的城市关系建构与创新网络模拟[J]. 地理学报, 2020, 75(4): 708-721. |
[6] | 夏军, 张永勇, 穆兴民, 左其亭, 周宇建, 赵广举. 中国生态水文学发展趋势与重点方向[J]. 地理学报, 2020, 75(3): 445-457. |
[7] | 孙毅中, 杨静, 宋书颖, 朱杰, 戴俊杰. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 2020, 75(10): 2164-2179. |
[8] | 张杰, 史培军, 杨静, 龚道溢. 北京地区景观城市化进程对暴雨过程的影响——以“7·21”暴雨为例[J]. 地理学报, 2020, 75(1): 113-125. |
[9] | 张行,梁小英,刘迪,史琴琴,陈海. 生态脆弱区社会—生态景观恢复力时空演变及情景模拟[J]. 地理学报, 2019, 74(7): 1450-1466. |
[10] | 崔学刚,方创琳,刘海猛,刘晓菲,李咏红. 城镇化与生态环境耦合动态模拟理论及方法的研究进展[J]. 地理学报, 2019, 74(6): 1079-1096. |
[11] | 朱文博, 张静静, 崔耀平, 郑辉, 朱连奇. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459. |
[12] | 卓莉, 张子彦, 雷小雨, 李秋萍, 陶海燕. 基于蒙特卡洛生存分析探究东北森林物候的影响因素[J]. 地理学报, 2019, 74(3): 490-503. |
[13] | 蒋晓辉,夏军,黄强,龙爱华,董国涛,宋进喜. 黑河“97”分水方案适应性分析[J]. 地理学报, 2019, 74(1): 103-116. |
[14] | 殷杰,许世远,经雅梦,尹占娥,廖邦固. 基于洪涝情景模拟的城市公共服务灾害应急响应空间可达性评价——以医疗急救为例[J]. 地理学报, 2018, 73(9): 1737-1747. |
[15] | 刘纪远,宁佳,匡文慧,徐新良,张树文,颜长珍,李仁东,吴世新,胡云锋,杜国明,迟文峰,潘涛,宁静. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5): 789-802. |