[1] Gat J R. Oxygen and hydrogen isotopes in the hydrological cycle. Annu. Rev. Earth Planet. Sci., 1996, 24: 225-262, doi: 10.1146/annurev.earth.24.1.225. [2] Schmidt G A. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange. J. Geophys. Res., 2005, 110(D21314), doi: 10.1029/2005JD005790. [3] Williams D G, Cable W, Hultine K et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agri Forest Meteorology, 2004, 125(3/4): 241-258, doi: 10.1016/j.agrformet.2004.04.008. [4] Hoefs J. Stable Isotope Geochemistry. Berlin and Heidelberg: Verlag-Springer, 2009. [5] Frankenberg C, Yoshimura K, Warneke T et al. Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. Science, 2009, 325(5946): 1374-1377, doi: 10.1126/science.1173791. [6] Angert A, Lee J-E, Yakir D A N. Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean. Tellus, 2008, 60(4): 674-684, doi: 10.1111/j.1600-0889.2008.00357.x. [7] Dansgaard W. Stable isotopes in precipitation. Tellus, 1964,16(4): 436-468, doi: 10.1111/j.2153-3490.1964.tb00181.x. [8] Jacob H, Sonntag C. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus, 1991, 43(3): 291-300, doi: 10.1034/j.1600-0889.1991.t01-2-00003.x. [9] Lee X, Smith R, Williams J. Water vapour 18O/16O isotope ratio in surface air in New England, USA. Tellus, 2006, 58 (4): 293-304, doi: 10.1111/j.1600-0889.2006.00191.x. [10]White J W C, Gedzelman S D. The isotopic composition of atmospheric water vapor and the concurrent meteorological situation. J. Geophys. Res., 1984,89(D3): 4937-4939,doi: 10.1029/JD089iD03p04937 [11] Gat J R, Klein B, Kushnir Y, et al. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern. Tellus, 2003, 55(5): 953-965,doi: 10.1034/j.1600-0889.2003.00081.x. [12] Lawrence J R, Gedzelman S D, Zhang X et al. Stable isotope ratios of rain and vapor in 1995 hurricanes. J. Geophys. Res., 1998, 103(D10): 11381-11400, doi: 10.1029/97JD03627. [13] Yu Wusheng, Tian Lide, Yao Tandong et al. Isotopic composition of atmospheric water vapor before and after the monsoon's end in the Nagqu River Basin. Chinese Science Bulletin, 2006, 51(2): 194-199. [余武生, 姚檀栋, 田立德 等. 那曲河流域季风结束前后大气水汽中δ18O变化特征. 科学通报, 2006, 51(2): 194-199.] [14] Yin Changliang, Yao Tandong, Tian Lide et al. Temporal variations of δ18O of atmospheric water vapor at Delingha. Science in China: Series D, 2008, 38(6): 723-731. [尹常亮, 姚檀栋, 田立德等. 德令哈大气水汽中δ18O的时间变化特 征. 中国科学: D辑, 2008, 38(6): 723-731.] [15] Wen X-F, Sun X-M, Zhang S-C et al. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 2008, 349(3/4): 489-500, doi: 10.1016/j.jhydrol.2007.11.021. [16] Wen X-F, Zhang S-C, Sun X-M et al. Water vapor and precipitation isotope ratios in Beijing, China. J. Geophys. Res.,2010, 115(D1), doi: 10.1029/2009jd012408. [17] Zhang Xinping, Zhang Xinzhu, Guan Huade et al. Spatial and temporal distribution characteristics of the δD in the atmospheric vapor as retrieved from the TES data. Acta Meteorologica Sinica, 2012, 70(6): 1367-1380. [章新平, 张新 主, 关华德等. 由TES反演的大气水汽中δD的时空分布特征. 气象学报, 2012, 70(6): 1367-1380.] [18] Imasu R, Ogawa T, Shimoda H. Meridional distribution feature of minor constituents as observed by IMG sensor aboard ADEOS satellite. Advances in Space Research, 2000, 25(5): 959-962. [19] Zakharov V, Imasu R. Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS data. Geophys. Res. Lett., 2004, 31(12), doi: 10.1029/2004gl019433. [20] Payne V H, Noone D. Global satellite measurements of HDO and implications for understanding the transport of water vapour into the stratosphere. Q. J. R. Meteorol. Soc., 2007, 133(627): 1459-1471, doi: 10.1002/qj.127. [21] Steinwagner J, Milz M, Clarmann T V et al. HDO measurements with MIPAS. Atmos. Chem. Phys., 2007,7: 931-970, doi: 10.5194/acp-7-2601-2007. [22] Worden J, Bowman K, Noone D et al. Tropospheric emission spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization. J. Geophys. Res., 2006,111(D16), doi: 10.1029/2005jd006606. [23] Worden J, Noone D, Galewsky J et al. Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory. Atmos. Chem. Phys., 2011, 11(9): 4491-4503, doi: 10.5194/acp-11-4491-2011. [24] Brown D, Worden J, Noone D. Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J. Geophys. Res., 2008, 113(D15124), doi: 10.1029/2007jd009676. [25] Lee J, Worden J, Noone D et al. Relating tropical ocean clouds to moist processes using water vapor isotope measurements. Atmos. Chem. Phys., 2011, 11(2): 741-752, doi: 10.5194/acp-11-741-2011. [26] Risi C, Bony S, Vimeux F et al. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation. J. Geophys. Res., 2010, 115(D24), doi: 10.1029/2010jd014690. [27] Worden J, Kulawik S, Frankenberg C et al. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances. Atmos. Meas. Tech, 2012, 5(2): 397-411, doi: 10.5194/amt-5-397-2012. [28] Worden J, Noone D, Bowman K et al. Importance of rain evaporation and continental convection in the tropical water cycle. Nature, 2007, 445(7127): 528-532, doi: 10.1038/nature05508. [29] Yoshimura K, Frankenberg C. Comparison of an isotopic atmospheric general circulation model with new quasi-global satellite measurements of water vapor isotopologues. J. Geophys. Res., 2011, 116(D19), doi: 10.1029/2011jd016035. [30] Huang Yimin, Zhang Xinping, Wu Huawu et al. Research on space distribution of dD in atmospheric water vapor based on TES data over Asia. Resources and Environment in the Yangtze Basin, 2012, 21(7): 879-884. [黄一民, 章新 平, 吴华武等. 基于TES 数据的亚洲大气水汽中δD的空间分布特征研究. 长江流域资源与环境, 2012, 21(7): 879-884.] [31] Yasunari T, Seki Y. Role of the Asian Monsoon on the interannual variability of the global climate system. Journal of the Meteorological Society of Japan JMSJAU, 1992, 70: 177-189. [32] Huang Ronghui, Huang Gang, Ren Baohua. Advances and problems needed for further investigation in the studies of the East Asian Summer Monsoon. Chinese Journal of Atmospheric Sciences, 1999, 23(2): 129-141. [黄荣辉, 黄刚, 任 保华. 东亚夏季风的研究进展及其需进一步研究的问题. 大气科学, 1999, 23(2): 129-141.] [33] Webster C R, Heymsfield A J. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science, 2003, 302: 1742-1745, doi: 10.1126/science.1089496. [34] Zhao Liangju, Yin Lixiao, Xiao Honglang et al. Isotopic evidence for the moisture origin and composition of surface runoff in the headwaters of the Heihe River Basin. Chinese Science Bulletin, 2011, 56(1): 58-67. [赵良菊, 尹力, 肖洪 浪等. 黑河源区水汽来源及地表径流组成的稳定同位素证据. 科学通报, 2011, 56(1): 58-67.] [35] Wu Jinkui, Yang Qiyue,Ding Yongjian et al. Variations and simulation of stable isotopes in precipitation in the Heihe River Basin. Environment Science, 2011, 32(7): 1857-1866. [吴锦奎, 杨淇越, 丁永建等. 黑河流域大气降水稳定同位 素变化及模拟. 环境科学, 2011, 32(7): 1857-1866.] [36] Zhang X, Nakawo M, Yao T et al. Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions. Science in China: Series D, 2002, 45(6): 481-493, doi: 10.1360/02yd9050. [37] Zhang Xinping, Liu Jinmiao, Tian Lide et al. Variations of δ18O in precipitation along vapor transport paths over Asia. Acta Geographica Sinica, 2004, 59(5): 699-708. [章新平, 刘晶淼, 田立德等. 亚洲降水中δ18O沿不同水汽输送路径的 变化. 地理学报, 2004, 59(5): 699-708.] [38] Zhang Xinping, Sun Zhian, Guan Huade et al. GCM simulation of stable water isotopes in water cycle and intercomparisons over East Asia. Journal of Glaciology and Geocryology, 2011, 33(6): 1274-1285. [章新平, 孙治安, 关华 德等. 东亚水循环中水稳定同位素的GCM模拟和相互比较. 冰川冻土, 2011, 33(6): 1274-1285.] [39] Liu Zhongfang, Tian Lide, Yao Tandong et al. Influence of moisture transport on stable isotope in precipitation in Yarlung Zangbo River Basin. Advances in Earth Science, 2007, 22(8): 842-850. [刘忠方, 田立德, 姚檀栋等. 水汽输 送对雅鲁藏布江流域降水中稳定同位素的影响. 地理科学进展, 2007, 22(8): 842-850.] [40] Tian L, Yao T, Schuster P F et al. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J. Geophys. Res., 2003, 108(D9), doi: 10.1029/2002jd002173. [41] Liu Zhongfang, Tian Lide, Yao Tandong et al. The temporal and spatial variations of δ18O in river water of the Yarlung Zangbo River Basin. Journal of Glaciology and Geocryology, 2008, 30(1): 20-27. [刘忠方, 田立德, 姚檀栋, 等. 雅鲁 藏布江流域河水中氧稳定同位素的时空变化. 冰川冻土, 2008, 30(1): 20-27.] [42] Liu Zhongfang, Tian Lide, Yao Tandong et al. Variations of δ18O in Precipitation of the Yarlung Zangbo River Basin. Acta Geographica Sinica, 2007, 62(5): 510-517. [刘忠方, 田立德, 姚檀栋等. 雅鲁藏布江流域降水中δ18O的时空变 化. 地理学报, 2007, 62(5): 510-517.] [43] Jouzel J, Russell G L, Suozzo R J et al. Simulations of the HDO and H218O atmospheric cycles using the NASA GISS general circulation model. J. Geophys. Res., 1987, 92: 14739-14760, doi: 10.1029/JD092iD12p14739. [44] Zhang Xinping, Liu Jinmiao, Sun Weizhen et al. Study on relationship between stable oxygen isotope in precipitation and relative metrological parameters in Southwest China. Science in China: Series D, 2006, 36(9): 850-859. [章新平, 刘晶淼, 孙维贞等. 中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究. 中国科学: D 辑, 2006, 36(9): 850-859.] |