[1] Li Xiaowen, Zhao Hongrui, Zhang Hao et al. Global change study and quantitative remote sensing for land surface parameters. Earth Science Frontiers, 2002, 9(2): 365-370. [李小文, 赵红蕊, 张颢等. 全球变化与地表参数的定量遥 感. 地学前缘, 2002, 9(2): 365-370.] [2] Xu L, Myneni R B, Chapin Iii F S et al. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 2013. Advance online publication, doi: http://dx.doi.org/10.1038/nclimate1836. [3] Li X W, Wang J D, Strahler A H. Scale effects and scaling-up by geometric-optical models. Science in China: Series E, 2000, 43(Suppl.): 17-22. [4] Li Xin, Li Xiaowen, Li Zengyuan et al. Progress on the watershed allied telemetry experimental research (WATER). Remote Sensing Technology and Application, 2012, 27(5): 637-649. [李新, 李小文, 李增元等. 黑河综合遥感联合试验 研究进展: 概述. 遥感技术与应用, 2012, 27(5): 637-649.] [5] Estes J E, Jensen J R, Simonett D S. Impacts of remote sensing on U.S. geography. Remote Sensing of Environment, 1980, 10: 43-80. [6] Cai Yunlong. New perspectives on physical geography. Geographical Research, 2010, 29(1): 1-11. [蔡运龙. 当代自然地 理学态势. 地理研究, 2010, 29(1): 1-11.] [7] Li Xiaowen. Retrospect, prospect and innovation in quantitative remote sensing. Journal of Henan University: Natural Science, 2005, 35(4): 49-56. [李小文. 定量遥感的发展与创新. 河南大学学报: 自然科学版, 2005, 35(4): 49-56.] [8] Albert B J, Strahler A H, Li X W et al. Radiometric measurements of gap probability in conifer tree canopies. Remote Sensing of Environment, 1990, 34: 179-192. [9] Li X W, Wan Z M. Comments on reciprocity in the BRDF modelling. Progress in Natural Science, 1999, 3: 99-103. [10] Li X W, Wang J D, Strahler A H. Apparent reciprocity failure in directional reflectance of structure surfaces. Progress in Natural Science, 1999, 9(10): 747-752. [11] Li X W, Wang J D. The definition of effective emissivity of land surface at the scale of remote sensing pixels. Chinese Science Bulletin, 1999, 44(23): 2154-2158. [12] Li X W, Wang J D, Strahler A H. Scale effects of Planck's Law over a non-isothermal blackbody surface. Science in China: Series E, 1999, (6): 652-656. [13] Liu Qiang, Li Xiaowen, Wang Jindi. A test of Reciprocity in remote sensing with POLDER data. Journal of Remote Sensing, 2000, 4(3): 183-188. [刘强, 李小文, 王锦地. 用多角度POLDER数据验证互易原理在遥感像元尺度的适用 性. 遥感学报, 2000, 4(3): 183-188.] [14] Woodcock C E, Strahler A H. The factor of scale in remote sensing. Remote Sensing of Environment, 1987, 21: 311-332. [15] Hay G J, Niemann K O, Goodenough D G. Spatial thresholds, image-objects, and upscaling: A multiscale evaluation. Remote Sensing of Environment, 1997, 62: 1-19. [16] Raffy M. Change of scale in models of remote sensing: A general method for spatialisation of models. Remote Sensing of Environment, 1992, 40: 101-112. [17] Raffy M, Gregoire C. Semi-empirical models and scaling: A least square method for remote sensing experiments. International Journal of Remote Sensing, 1998, 19: 2527-2541. [18] Hu Z, Islam S. A framework for analyzing and designing scale invariant remote sensing algorithms. IEEE Transaction on Geoscience and Remote Sensing, 1997, 13: 747-755. [19] Zhang X, Zhang B, Zheng L F et al. Study on the retrieval of emissivity spectra from airborne thermal infrared data. Journal of Infrared and Millimeter Waves, 2000, 19(5): 361-365. [20] Su L H, Li X W, Friedl M. et al. A kernel-driven model of effective directional emissivity for non-isothermal surfaces. Progress in Natural Science, 2002, 12(8): 603-607. [21] Su L H, Li X W, Liang S L. Simulation of scaling effects of thermal emission from non-isothermal pixels with the typical three-dimensional strucuture. International Journal of Remote Sensing, 2003, 24(19): 3743-3753. [22] Chen Jun, Wang Weicai, Wang Baojun et al. Distribution variance of suspended sediment concentration and scaling effect correction: Eight neighborhod algorithm. Journal of Infrared and Milimeter Waves, 2010, 29(6): 440-445. [陈军, 王伟财, 王保军等. 悬浮泥沙浓度分布方差与尺度修正: 八邻域算法. 红外与毫米波学报, 2010, 29(6): 440-445.] [23] Wan Huawei, Wang Jindi, Qu Yonghua et al. Preliminary research on scale effect and scaling-up of the vegetation spectrum. Journal of Remote Sensing, 2008, 12(4): 538-545. [万华伟, 王锦地, 屈永华等. 植被波谱空间尺度效应及 尺度转换方法初步研究. 遥感学报, 2008, 12(4): 538-545.] [24] Li Xiaomei, Sha Jinming, Lian Jianglong et al. Regional characteristic scale of NDVI based on wavelet analysis. Acta Ecologica Sinica, 2010, 30(11): 2864-2873. [李小梅, 沙晋明, 连江龙等. 基于小波变换的NDVI区域特征尺度. 生态 学报, 2010, 30(11): 2864-2873.] [25] Zhang H, Jiao Z T, Yang H. Research on scale effects of histogram. Science in China: Series D, 2002, 45(10): 949-960. [26] Quan Jinling, Zhan Wenfeng, Chen Yunhao et al. Downscaling remotely sensed land surface temperatures: A comparison of typical methods. Journal of Remote Sensing, 2013, 17(2): 361-387. [全金玲, 占文凤, 陈云浩等. 遥感 地表温度降尺度方法比较: 性能对比及适应性评价. 遥感学报, 2013, 17(2): 361-387.] [27] Chen Jian, Ni Shaoxiang, Li Jingjing et al. Sealing efect and spatial variability in retrieval of vegetation LAl from remotely sensed data. Acta Ecologica Sinica, 2006, 26(5): 1502-1508. [陈健, 倪绍祥, 李静静等. 植被叶面积指数遥 感反演的尺度效应及空间变异性. 生态学报, 2006, 26(5): 1502-1508.] [28] Zhu X H, Feng X M, Zhao Y S et al. Scale effect and error analysis of crop LAI inversion. Journal of Remote Sensing, 2010, 14(3): 579-592. [29] Wu Hua, Jiang Xiaoguang, Xi Xiaohuan et al. Comparison and analysis of two general scaling methods for remotely sensed information. Journal of Remote Sensing, 2009, 13(2): 183-189. [吴骅, 姜小光, 习晓环等. 两种普适性尺度转 换方法比较与分析研究. 遥感学报,2009,13(2): 183-189.] [30] Fan Wenjie, Yan Binyan, Xu Xiru. Crop area and leaf area index simultaneous retrieval based on spatial scaling transformation. Science in China: Earth Science, 2010, 40(12): 1725-1732. [范闻捷, 闫彬彦, 徐希儒. 尺度转换规律与 同步反演作物播种面积和叶面积指数. 中国科学: 地球科学, 2010, 40(12): 1725-1732.] [31] Wang L W, Wei Y X, Niu Z. Spatial scaling of net primary productivity model based on remote sensing. Journal of Remote Sensing, 2010, 14(6): 1074-1089. [32] Xu Zhiying, Hu Yunfeng, Liu Yue et al. A review on the accuracy analysis of spatial scaling data. Progress in Geography, 2012, 31(12): 1574-1582. [徐芝英, 胡云峰, 刘越等. 空间尺度转换数据精度评价的准则和方法. 地理科 学进展, 2012, 31(12): 1574-1582.] [33] Li X, Cheng G D, Liu S M et al. Heihe Watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013. Advance online publication, doi: http://dx.doi.org/10.1175/BAMS-D-12-00154. |