[1] Bartlett K B, Harris R C. Review and assessment of methane emissions form wetlands. Chemosphere, 1993, 26:261-320.[2] Shen Huanting, Zhu Jianrong. The land and ocean interaction in the coastal zone of China. Marine Science Bulletin,1999, 18(6): 11-17. [沈焕庭, 朱建荣. 论我国海岸带海陆相互作用研究. 海洋通报, 1999, 18: 11-17.][3] Kelley C A, Martens C S, Ussler W. Methane dynamics across a tidally flooded riverbank margin. Limnology andOceanography, 1995, 40: 1112-1129.[4] Magenheimer J F, Moore T R, Chmura G L et al. Methane and carbon dioxide flux from a macrotidal salt marsh bay of Fundy, New Brunswick. Estuaries, 1996, 19: 139-145.[5] van der Nat F J W A, Middelburg J J. Methane emission from tidal freshwater marsh. Biogeochemistry, 2000, 49:103-121.[6] Chang T C, Yang S S. Methane emission from wetland in Taiwan. Atmosphere Environment, 2003, 37: 4551-4558.[7] Chmura G L, Anisfeld S C, Cahoon D R et al. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17: 1111-1120.[8] Huang G H, Li X Z, Hu Y M et al. Methane (CH4) emission from a natural wetland of northern China. Journal of Environmental Science and Health, Part A, 2005, 9: 1227-1238.[9] Tong Chuan, Zeng Congsheng, Wang Weiqi et al. Main factors influencing CH4 flux from a Phragmites australiswetland in the Min River estuary. Acta Scientiae Circumstantiae, 2009, 29(1): 207-216. [仝川, 曾从盛, 王维奇等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 2009, 29: 207-216.][10] van der Nat F J W A, Middelburg J J, Van Meteren D et al. Diel methane emission patterns from Scripus lacustric andPhragmites australis. Biogeochemistry, 1998, 41: 1-22.[11] Zheng Caihong, Zeng Cengsheng, Chen Zhiqiang et al. A study on the changes of landscape pattern of estuarywetlands of the Minjiang River. Wetland Science, (4): 29-34. [郑彩红, 曾从盛, 陈志强等. 闽江河口区湿地景观格局演变研究. 湿地科学, 2006, (4): 29-34.][12] Watanabe I, Takada G, Hashimoto T et al. Evaluation of alternative substrates for determining methane-oxidizingactivities and methanotrophic populations in soils. Biology and Fertility of Soils, 1995, 20: 101-106.[13] King G M. In situ analysis of methane oxidation association with roots and rhizomes of a Bur Reed in a marinewetland. Applied and Environmental Microbiology, 1996, 62: 4548-4555[14] Sorrell B K, Tanner C C. Convective gas flow and internal aeration in Eleocharis sphacelata in relation to water depth.Journal of Ecology, 2000, 88, 778-789.[15] Chanton J P, Arkebauer T J, Harden H S et al. Diel variation in lacunal CH4 and CO2 concentration and δ13C inPhragmites australis. Biogeochemistry, 2002, 59:287-301.[16] Hang Jiafang, Tong Chuan, Liu Zexiong et al. Plant-mediated Methane Transport and Emission from a Spartinaalterniflora Marsh. Chinese Bulletin of Botany, 2011, 46 (5): 534-543. [黄佳芳, 仝川, 刘泽雄等. 沼泽湿地互花米草植物体传输与排放甲烷特征. 植物学报, 2011, 46(5): 534-543.][17] Rolston D E. Gas flux//Klute A. Methods of Soil Analysis. 2nd ed. Monograph No.9. American Society of Agronomyand Soil Science Society of America, Wisconsin, 1986: 1103-1119.[18] Hirota M, Tang Y H, Hu Q W et al. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateauwetland. Soil Biology & Biochemistry, 2004, 36: 737-748.[19] Tamn F Y, Wong Y S. Variations of soil nutrient and organic matter content in a subtropical mangrove ecosystem.Water, Air and Soil Pollution, 1998, 103: 245-261.[20] Barens J, Ramesh R, Purvaja R et al. Tidal dynamics and rainfall control N2O and CH4 emission from a pristinemangrove creek. Geophysical Research Letter, 2006, 33, LI5405, doi: 10.1029/2006 GL 026829.[21] Kim G, Hwang D W. Tidal pumping of groundwater into the coastal ocean revealed from submarine 222 Rn and CH4monitoring. Geophysical Research Letter, 2002, 29(14): 10.1029/2002 GL015093.[22] DeLaune R D, Smith C J, Patrick W H. Methane release from Gulf coast wetlands. Tellus, 1983, 35B: 8-15.[23] Ma Anan, Lu Jianjian. Effects of Phragmites australis on methane emission from a brackish estuarine wetland. ActaEcologica Sinica, 31(8): 2245-2252. [马安娜, 陆健健. 芦苇在微咸水河口湿地甲烷排放中的作用. 生态学报, 2011, 31(8): 2245-2252.][24] Cheng X L, Peng R H, Chen J Q et al. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis inexperimental mesocosms. Chemosphere, 2007, 68: 420-427.[25] Segers R. Methane production and methane consumption: A review of processes underlying wetland methane fluxes.Biogeochemistry, 1998, 41: 23-51.[26] Popp T J, Chanton J P, Whiting G J et al. Evaluation of methane oxidation in the rhizosphere of a Carex dominatedfen in north central Alberta, Canada. Biogeochemistry, 2000, 51: 259-281.[27] Freeman C, Nevison G B, Kang H et al. Contrasted effects of simulated drought on the production and oxidation ofmethane in a mid-Wales wetland. Soil Biology & Biochemistry, 2002, 34: 61-67.[28] Ding W X, Cai Z C, Tsuruta H. Plant species effects on methane emissions from freshwater marshes. AtmosphericEnvironment, 2005, 39(18): 3199-3207.[29] Schimel J P. Plant transport and methane production as controls on methane flux from arctoc wet meadow tundra.Biogeochemistry, 1995, 28: 183-200.[30] Jia Z J, Cai Z C, Xu H et al. Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddysoil. Plant and Soil, 2001, 230: 211-221.[31] Brix H. Gas exchange through dead culms of reed, Phragmites autralis (Car.) Trin ex Steud. Aquatic Botany, 1989, 35:81-89.[32] Paula Kankaala, Anne Ojala, Tiina Käki. Temporal and spatial variation in methane emissions from a floodedtransgression shore of a boreal lake. Biogeochemistry, 2004, 68: 297-311.[33] Colmer T D. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss fromroots. Plant Cell Environment, 2003, 26: 17-36[34] Kelker D, Chanton J P. The effect of clipping on methane emission from Carex aquatilis. Biogeochemistry, 1997, 39:37-44.[35] Käki T, Ojala A, Kankaala P. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. exSteud. and Typha latifolia L. in a boreal lake. Aquatic Botany, 2001, 71: 259-271.[36] Wang Z P, Han X G. Diurnal variation in methane emissions in relation to plants and environmental variables in theInner Mongolia marshes. Atmospheric Environment, 2005, 39(24): 6295-6305.[37] Boon P I, Mitchell A, Lee K. Effects of wetting and drying on methane emissions from ephemeral floodplain inwetlands in southeastern Australia. Hydrobiology, 1997, 357(1/3): 73-87.[38] Chen H, Wu N, Yao S P. et al. Diurnal variation of methane emissions from an alpine wetland on the eastern edge ofQinghai-Tibetan Plateau. Environmental Monitoring Assessment, 2010, 164: 21-28.[39] Yamamoto A, Hirota M, Suzuki S et al. Effects of tidal fluctuations on CO2 and CH4 fluxes in the littoral zone of abrackish-water lake. Limnology, 2009, 10: 229-237.[40] Zhang Y H, Ding W X. Diel methane emissions in stands of Spartina alterniflora and Suaeda salsa from a coastal saltmarsh. Aquatic Botany, 2011, 95: 262-267.[41] Brix H, Sorrell B K, Schierup H. Gas fluxes achieved by in situ convective flow in Phragmites australis. AquaticBotany, 1996, 54: 151-163.[42] Whiting G J, Chanton J P. Control of the diurnal pattern of methane emission from emergent aquatic macrophytes bygas transport mechanisms. Aquatic Botany, 1996, 54: 237-253.[43] Sebacher D I, Harriss R C, Bartlett K B. Methane emissions to the atmosphere through aquatic plants. Journal ofEnvironmental Quality, 1985, 14: 40-46.[44] Armstrong J, Lemos E E P, Zobayed S M A et al. Humidity-induced convective through flow ventilation systembenefits Annona squamosa L. Explants and Coconut Calloid. Annals of Botany, 1997, 79: 31-40.[45] Arkebauer T J, Chanton J P, Verma S B et al. Field measurements of internal pressurization in Phragmites australis andimplications for regulation of methane emissions in a midlatitude prairie wetland. American Journal of Botany, 2001,88: 653-658.[46] Brix H, Sorrell B K. Internal pressurization and convective gas flow in some emergent freshwater macrophytes.Limnology and Oceanography, 1992, 37: 1420-1433.[47] Tornbjerg T, Bendix M, Brix H. Internal gas-transport in Typha latifolia L. and Typha angustifolia L. 2. Convectivethrough flow pathways and ecological significance. Aquatic Botany, 1994, 49: 91-105.[48] Yavitt J B, Knapp A K. Aspects of methane flow from sediment through emergent cattail (Typha latifolia) plants. NewPhytol, 1998, 139: 495-503.[49] Garnet K N, Megoniga J P, Litchfield C et al. Physiological control of leaf methane emission from wetland plants.Aquatic Botany, 2005, 81: 141-155. |