地理学报 ›› 2012, Vol. 67 ›› Issue (5): 699-709.doi: 10.11821/xb201205012
郭华1, HU Qi2, 张奇1, 王艳君3
收稿日期:
2011-11-03
修回日期:
2011-03-25
出版日期:
2012-05-20
发布日期:
2012-05-20
通讯作者:
张奇(1966-), 男, 研究员, 主要从事湖泊流域径流量和物质通量对气候变化和人类活动的响应机制研究。E-mail: qzhang@niglas.ac.cn
基金资助:
GUO Hua1, HU QI2, ZHANG QI1, WANG Yanjun3
Received:
2011-11-03
Revised:
2011-03-25
Online:
2012-05-20
Published:
2012-05-20
Supported by:
摘要: 本研究分析了1960-2008 年鄱阳湖流域的气候和水文变化特征,用水量和能量平衡关系解释和印证了这些特征,并由此揭示了鄱阳湖流域水文变化特征的成因及干旱和洪涝发生的规律。得到以下主要结论:1) 正常或偏湿年份鄱阳湖流域6 月份容纳水量能力已达到饱和,若6-7 月降水量超出正常年份,则流域超饱和,洪涝发生。长江中上游降水量7 月份的异常偏多会对鄱阳湖流域的洪涝起触发和强化作用。2) 鄱阳湖流域7-10 月蒸发量大于降水量,特别是7-8 月蒸发量大于降水量的一倍以上,所以若4-6 月流域降水量少于平均年同期量的20%以上,则累积效应使秋旱发生。当初冬(11 月) 降水偏少时,秋旱可持续到来年的初春,形成严重的春旱。长江中上游降水量对鄱阳湖流域的春旱没有直接影响,但7-8 月降水量偏少时则对秋旱起重要的强化作用。3) 长江对鄱阳湖流域的水文过程和旱涝的发生、发展的影响主要在7-8 月的“长江与鄱阳湖耦合作用”时期和9-10月的“弱长江作用”期。
郭华, HU Qi, 张奇, 王艳君. 鄱阳湖流域水文变化特征成因及旱涝规律[J]. 地理学报, 2012, 67(5): 699-709.
GUO Hua, HU QI, ZHANG QI, WANG Yanjun. Annual Variations in Climatic and Hydrological Processes and Related Flood and Drought Occurrences in the Poyang Lake Basin[J]. Acta Geographica Sinica, 2012, 67(5): 699-709.
[1] Jiang Tong, Shi Yafeng. Global climatic warming, the Yangtze floods and potential loss. Advance in Earth Sciences,2003, 18(2): 277-284. [姜彤, 施雅风. 全球变暖、长江水灾与可能损失. 地球科学进展, 2003, 18(2): 277-284.] [2] Shankman D, Keim B D, Song J. Flood frequency in China's Poyang Lake region: Trends and teleconnections.International Journal of Climatology, 2006, 26: 1255-1266, doi: 10.1002/joc.1307. [3] Min Qian, Min Dan. Drought change characteristics and drought protection countermeasures for Poyang Lake Basin.Journal of China Hydrology, 2010, 30(1): 84-88. [闵骞, 闵聃. 鄱阳湖区干旱演变特征与水文防旱对策. 水文, 2010, 30(1): 84-88.] [4] Guo Hua, Hu Qi, Zhang Qi. Changes in hydrological interactions of the Yangtze River and the Poyang Lake in Chinaduring 1957-2008. Acta Geographica Sinica, 2011, 66(5): 609-618. [郭华, Hu Qi, 张奇. 近50 年来长江与鄱阳湖水文相互作用的变化. 地理学报, 2011, 66(5): 609-618.] [5] Shi Y, Jiang T, Wang J et al. Yangtze floods observations and scenarios//Jiang T, King L, Gemmer M et al.//ClimateChange and Yangtze Floods. Beijing: Science Press, 2004: 182-202. [6] Su B, Xiao B, Zhu D et al. Trends in frequency of precipitation extremes in the Yangtze River Baisn, China:1960-2003. Hydrological Sciences Journal, 2005, 50(3): 479-492. [7] Feng S, Nadarajah S, Hu Q. Modeling annual extreme precipitation in China using the generalized extreme valuedistribution. Journal of Meteorological Society of Japan, 2007, 85(5): 599-613. [8] Min Shen, Liu Jian. Characteristics and causes of the extreme precipitation anomaly in Lake Poyang area. Journal ofLake Sciences, 2011, 23(3): 435-444. [闵屾, 刘健. 鄱阳湖区域极端降水异常的特征及成因. 湖泊科学, 2011, 23(3):435-444.] [9] Guo Hua, Jiang Tong, Wang Guojie et al. Observed trends and jumps of climate change over Lake Poyang basin,China: 1961-2003. Journal of Lake Sciences, 2006, 18(5): 443-451.[郭华, 姜彤, 王国杰等. 1961-2003 年间鄱阳湖流域气候变化趋势及突变分析. 湖泊科学, 2006, 18(5): 443-451.] [10] Zhang Q, Xu C Y, Zhang Z et al. Spatial and temporal variability of precipitation maxima during 1960-2005 in theYangtze River Basin and possible association with large-scale circulation. Journal of Hydrology, 2008, 353: 215-227. [11] Jiang T, Zhang Q, Zhu D et al. Yangtze floods and droughts (China) and teleconnections with ENSO activities(1470-2003). Quaternary International, 2006, 144: 29-37. [12] Min Qian. Impacts of reclamation of the Poyang Lake on lake shape and water regime during recent 50 years.Advances in Water Science, 2000, 11(1): 76-81. [闵骞. 近50 年鄱阳湖形态和水情的变化及其与围垦的关系. 水科学进展, 2000, 11(1): 76-81.] [13] Min Qian. Returning the land to Poyang Lake and its impacts on the floods. Journal of Lake Sciences, 2004, 16(3):215-222. [闵骞. 鄱阳湖退田还湖及其对洪水的影响. 湖泊科学, 2004, 16(3): 215-222.] [14] Xiong L, Guo S. Trend test and change-point detection for the annual discharge series of the Yangtze River at theYichang hydrological station. Hydrological Sciences Journal, 2004, 49: 99-112. [15] Zhang Q, Chen G, Su B et al. Periodicity of sediment load and runoff in the Yangtze River Basin and possibleimpacts of climatic changes and human activities. Hydrological Sciences Journal, 2008, 53(2): 457-465. [16] Chen X, Zong Y, Zhang E et al. Human impacts on the Changjiang (Yangtze) River Basin, China, with specialreference to the impacts on the dry season water discharges into the sea. Geomorphology, 2001, 41: 111-123. [17] Chen X, Zhang E, Xu J. Large and episodic decrease of water discharge from the Yangtze River to the sea during thedry season. Hydrological Sciences Journal, 2002, 47(1): 41-47. [18] Yang S L, Gao A, Hotz H M et al. Trends in annual discharge from the Yangtze River to the sea (1865-2004).Hydrological Sciences Journal, 2005, 50(5): 825-836. [19] Varis O, Vakkilainen P. China's 8 challenges to water resources management in the first quarter of the 21st century.Geomorphology, 2001, 41: 93-104. [20] Dai Z, Du J, Li J et al. Runoff characteristics of the Changjiang River during 2006: Effect of extreme drought and theimpounding of the Three Gorges Dam. Geophysical Research Letters, 2008, 35: L07406. [21] Hu Xiying, Zhu Hongfu. Three-Gorge Project and flood protection of important city in the Poyang Lake district.Journal of Jiangxi Normal University: Natural Sciences Edition, 1998, 22(4): 365-370. [胡细英, 朱宏富. 三峡工程与鄱阳湖区重要城市防洪. 江西师范大学学报: 自然科学版, 1998, 22(4): 365-370.] [22] Hu Q, Feng S, Guo H et al. Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake,China. Journal of Hydrology, 2007, 347: 90-100. [23] Guo H, Hu Q, Zhang Q et al. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with thePoyang Lake, China: 2003-2008. Journal of Hydrology, 2011, 416-417: 19-27. [24] Feng S, Hu Q, Qian W. Quality control of daily meteorological data in China (1951-2000): A new dataset.International Journal of Climatology, 2004, 24: 853-870. [25] Wang Y, Jiang T, Bothe O et al. Changes of pan evaporation and reference evapotranspiration in the Yangtze Riverbasin. Theoretical and Applied Climatology, 2007, 90: 13-23. [26] Wang Yanjun, Jiang Tong, Liu Bo. Trends of estimated and simulated actual evapotranspiration in the Yangtze RiverBasin. Acta Geographica Sinica, 2010, 65(9): 1079-1088. [王艳君, 姜彤, 刘波. 长江流域实际蒸发量的变化趋势. 地理学报, 2010, 65(9): 1079-1088.] [27] Arnold J G, Allen P M, Muttiah R et al. Automated base flow separation and recession analysis techniques. GroundWater, 1995, 33(6): 1010-1018. [28] Allen R G, Pereira L S, Raes D et al. Crop evapotranspiration guidelines for computing crop water requirements. FAOIrrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy, 1998: 50. |
[1] | 柴元方, 邓金运, 杨云平, 孙昭华, 李义天, 朱玲玲. 长江中游荆江河段同流量—水位演化特征及驱动成因[J]. 地理学报, 2021, 76(1): 101-113. |
[2] | 董广辉, 仇梦晗, 李若, 陈发虎. 探讨过去人地关系演变机制的“支点”概念模型[J]. 地理学报, 2021, 76(1): 15-29. |
[3] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |
[4] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[5] | 杨默远, 刘昌明, 潘兴瑶, 梁康. 基于水循环视角的海绵城市系统及研究要点解析[J]. 地理学报, 2020, 75(9): 1831-1844. |
[6] | 袁玉, 方国华, 陆承璇, 颜敏. 基于景观生态学的城市化背景下洪灾风险评估[J]. 地理学报, 2020, 75(9): 1921-1933. |
[7] | 方世敏, 黄琰. 长江经济带旅游效率与规模的时空演化及耦合协调[J]. 地理学报, 2020, 75(8): 1757-1772. |
[8] | 杨霄. 1570—1971年长江镇扬河段江心沙洲的演变过程及原因分析[J]. 地理学报, 2020, 75(7): 1512-1522. |
[9] | 林峰, 陈兴伟, 姚文艺, 方艺辉, 邓海军, 吴杰峰, 林炳青. 基于SWAT模型的森林分布不连续流域水源涵养量多时间尺度分析[J]. 地理学报, 2020, 75(5): 1065-1078. |
[10] | 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. |
[11] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[12] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[13] | 夏军, 张永勇, 穆兴民, 左其亭, 周宇建, 赵广举. 中国生态水文学发展趋势与重点方向[J]. 地理学报, 2020, 75(3): 445-457. |
[14] | 马彬, 张勃. 基于格点数据的1961—2016年中国气候季节时空变化[J]. 地理学报, 2020, 75(3): 458-469. |
[15] | 赵成双苹, 莫多闻. 长江中游江汉—洞庭盆地全新世以来水文环境演变与人类活动[J]. 地理学报, 2020, 75(3): 529-543. |