[1] Nash T H, White S L, Marsh J E. Lichen and moss distribution and biomass in hot desert ecosystems. The Bryologist, 1979, 80: 470-479.
[2] Loria M, Herrnstad I. Moss capsules as food for the harvest ant, Messor. The Bryologist, 1980, 83: 524-525.
[3] Belnap J, Harper K T, Warren S D. Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content and chlorophyll degradation. Arid Soil Res. Rehabil., 1994, 8: 1-8.
[4] Friedmann E I, Galun M. Desert algae, lichens and fungi. In: Brown G W (ed.), Desert Biology. New York: Academic Press, 1974. 165-212.
[5] West N E. Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research, 1990, 20: 179-223.
[6] Belnap J. Surface disturbances. Environmental Monitoring and Assessment, 1995, 37: 39-57.
[7] Cameron R E. Desert algae. Jet Propulsion Lab Technical Report, 1966, 32: 1-41.
[8] Belnap J, Gardner J S. Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat., 1993, 53: 40-47.
[9] Stoddart L A, Smith A D, Box T W. Range Management. New York: McGraw-Hill, 1943. 532.
[10] Daubenmire R. Steppe vegetation of Washington. Agricultural Experiment Station Technical Bulletin No.62, Washington State University, Pullman, 1970. 131.
[11] Hironaka M, Fosberg M A, Winward A H. Sagebrush-grass habitat types of southern Idaho. University of Idaho Forest, Wildlife and Range Experiment Station Bulletin No.35, University of Idaho, Moscow, 1983. 44.
[12] Eldridge D J, Greene R S B. Microbiotic soil crusts. Aus. J. Soil Res., 1994, 32: 389-415.
[13] Townshend J R, Justice C O. Analysis of dynamics of African vegetation using the normalized difference vegetation index. Int. J. Rem. Sens., 1986, 12: 1224-1242.
[14] Li Xinrong, Jia Yukui, Long Liqun et al. Advances in microbiotic soil crust research and its ecological significance in arid and semiarid region. Journal of Desert Research, 2001, 21(1): 4-12.
[李新荣, 贾玉奎, 龙利群 等. 干旱半干旱地区土壤微生物结皮的生态学意义及若干研究进展. 中国沙漠, 2001, 21(1): 4-12.]
[15] Yang Xiaohui, Zhang Kebin, Zhao Yunjie. Microbiotic soil crust. Acta Ecologica Sinica, 2001, 21(3): 474-480.
[杨晓晖, 张克斌, 赵云杰. 生物土壤结皮. 生态学报, 2001, 21(3): 474-480.]
[16] Harper K T. A role for nonvascular plants in management of arid and semiarid rangeland. In: Tueller P T, Vegetation Science Applications for Rangeland Analysis and Management. Dordrecht: Kluwer Academic Publishers, 1988. 135-169.
[17] Friedmann E I, Ocampo-Paus R. Endolithic blue-green algae in the dry valley: primary producers in the Antarctic desert ecosystem. Science, 1976, 193: 1247-1249.
[18] Townshend J R, Justice C O. Analysis of dynamics of African vegetation using the normalized difference vegetation index. Int. J. Rem. Sens., 1986, 12: 1224-1242.
[19] Belnap J, Lange O L. Biological Soil Crust: Structure, Function, and Management. Berlin: Springer-Verlag, 2001.
[20] Eldridge D J, Bradstock R A. The effect of time since fire on the cover and composition of cryptogamic soil crust on a eucalypt shrubland soil. Cunninghamia, 1994, 3: 521-527.
[21] Eldridge D J, Ferris J. Recovery of populations of the soil lichen Psora crenata after disturbance in arid South Australia. The Rangeland Journal, 1999, 21: 194.
[22] Eldridge D J. Trampling of microphytic crusts on calcareous soils and its impact on erosion under rain-impacted flow. Catena, 1998, 33: 221-239.
[23] Anderson D C, Harper K T, Rushforth, S R. Recovery of cryptogamic soil crust from grazing in Utah deserts. Journal of Range Management, 1982, 35: 180-185.
[24] Callison J, Brotherson J D, Bowns J E. The effects of fire on the blackbush (Coleogyne ramosissima) community of southwest Utah. Journal of Range Management, 1985, 38: 535-538.
[25] Jeffries D L, Klopatek J M. Effects of grazing on the vegetation of the blackbrush association. Journal of Range Management, 1987, 40: 390-392.
[26] Cole D N. Trampling disturbance and recovery of cryptogamic soil crusts in Grand Canyon National Park. Great Basin Naturalist, 1990, 50: 321-325.
[27] Belnap J. Measuring restoration success: a lesson from Patton's tank tracks. Ecological Bulletin, 1998: 79: 33.
[28] Belnap J. The world at your feet. Frontiers in Ecology and the Environment, 2003, 1(5): 181-189.
[29] Graetz R D, Gentle M R. The relationship between reflectance in the Landsat wavebands and the composition of an Australian semi-arid shrub rangeland. Photogrammetric Engineering and Remote Sensing, 1982, 48: 1721-1730.
[30] Ager C M, Milton N M. Spectral reflectance of lichens and their effects on the reflectance of rock substrates. Geophysics, 1987, 52: 898-906.
[31] Jacobberger P A. Reflectance characteristics and surface processes in stabilized dune environments. Remote Sensing of Environment, 1989, 28: 287-295.
[32] O'Neill A L. Reflectance spectra of microphytic soil crusts in semiarid Australia. International Journal of Remote Sensing, 1994, 15: 675-681.
[33] Rollin E M, Milton E J, Roche P. The influence of weathering and lichen cover on the reflectance spectra of granitic rocks. Remote Sensing of Environment, 1994, 50: 194-199.
[34] Karnieli A, Tsoar H. Satellite spectral reflectance of biogenic crust developed on desert dune sand along the Israel-Egypt border. International Journal of Remote Sensing, 1995, 16: 369-374.
[35] Tsoar H, Karnieli A. What determines the spectral reflectance of the Negev-Sinai sand dunes. International Journal of Remote Sensing, 1996, 17: 513-525.
[36] Karnieli A, Shachak M, Tsoar H. The effect of microphytes on the spectral reflectance of vegetation in semiarid regions. Remote Sensing of Environment, 1996, 57: 88-96.
[37] Karnieli K, Sarafis V. Reflectance spectrometry of cyanobacteria within soil crusts: a diagnostic tool. International Journal of Remote Sensing, 1996, 8: 1609-1615.
[38] Pinker R T, Karnieli A. Characteristic spectral reflectance of a semi-arid environment. International Journal of Remote Sensing, 1995, 16: 1341-1363.
[39] Karnieli A. Development and implementation of spectral crust index over dune sands. International Journal of Remote Sensing, 1997, 18: 1207-1220.
[40] Chen J, Zhang Y M, Tamura M et al. A new index for mapping lichen-dominated biological soil crust in desert area. Remote Sensing of Environment, 2003, in revision.
[41] Zhang Liyun, Chen Changdu. On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica, 2002, 22(11): 1923-1932.
[张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点. 生态学报, 2002, 22(11): 1923-1932.]
[42] Huang C, Wylie B, Yang L et al. Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. USGS EROS Data Centre, 2000. Internet source: http://landcover.usgs.gov/pdf/tasseled.pdf.
[43] Zhang Yuanming, Cao Tong, Pan Borong. A study on bryophyte associated with formation of soil crust in south fringe of Gurbantunggut Desert in Xinjing. Acta Bot. Boreal-Occidentalis Sinica, 2002, 22(1): 18-23.
[张元明, 曹同, 潘伯荣. 新疆古尔班通古特沙漠南缘土壤结皮中苔藓植物的研究. 西北植物学报, 2002, 22(1): 18-23.]
|