地理学报 ›› 2013, Vol. 68 ›› Issue (3): 318-327.doi: 10.11821/xb201303003
南卓铜1,2, 黄培培1, 赵林1
收稿日期:
2012-12-10
修回日期:
2013-01-12
出版日期:
2013-03-20
发布日期:
2013-03-20
作者简介:
南卓铜(1977-), 男, 浙江乐清人, 研究员, 博士生导师, 主要研究方向寒区环境建模、空间决策支持系统、科学数据共享.E-mail: nztong@lzb.ac.cn
基金资助:
科技基础性工作专项(2008FY110200); 国家重点实验室开放基金(SKLFSE201009)
NAN Zhuotong1,2, HUANG Peipei1, ZHAO Lin1
Received:
2012-12-10
Revised:
2013-01-12
Online:
2013-03-20
Published:
2013-03-20
Supported by:
Special Basic Research Funds, No.2008FY110200; Open Project of National Key Laboratory, No.SKLFSE201009
摘要: 准确评估青藏高原西部多年冻土的空间分布及多年冻土下限深度情况对该区地下水资源利用、生态环境保护有重要意义.本文依托科技基础性工作专项“青藏高原多年冻土本底调查”在该区及周边取得的冻土调查资料,利用遥感数据和扩展地面冻结数模型模拟了该区多年冻土的空间分布,调查区的模拟验证表明该方法有较高的精度.在此基础上,根据有限的地温实测资料建立了地温与位置、高程、坡向和太阳辐射的关系,并根据地温—下限关系估算了该区多年冻土下限深度的分布情况.研究表明,该区有多年冻土约占36.9%,季节冻土占57.5%,多年冻土主要分布在34°N~36.5°N范围的喀喇昆仑、西昆仑一带,季节冻土主要分布在塔里木盆地和34°N以南地区.阿里高原及以南是岛状多年冻土分布区域,其多年冻土分布面积少于此前出版的冻土图所绘制的.青藏高原西部区域的多年冻土下限深度整体表现为由东南—西北逐渐加深.
南卓铜, 黄培培, 赵林. 青藏高原西部区域多年冻土分布模拟及其下限估算[J]. 地理学报, 2013, 68(3): 318-327.
NAN Zhuotong, HUANG Peipei, ZHAO Lin. Permafrost distribution modeling and depth estimation in the Western Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2013, 68(3): 318-327.
[1] Wang Liquan, Zhu Dicheng, Pan Guitang. Primary results and progress of regional geological survey (1:250000): Thesouth of Qinghai-Tibet Plateau. Regional Geology of China, 2004, 23(5/6): 413-420. [王立全, 朱弟成, 潘桂棠. 青藏高原1:25 万区域地质调查主要成果和进展综述(南区). 地质通报, 2004, 23(5/6): 413-420.][2] Li Rongshe, Yang Yongcheng, Meng Yong. Main results and progress in 1:250000 regional geological survey of thenorthern Qinghai-Tibet Plateau. Regional Geology of China, 2004, 23(5/6): 421-426. [李荣社,杨永成,孟勇. 青藏高原1:25 万区域地质调查主要成果和进展综述(北区). 地质通报, 2004, 23(5/6): 421-426.][3] Guo Hongji. The prominent position of Qinghai-Tibetan region in the Sino-Indian geo-strategic and analysis ofhomeland security. Journal of Qinghai Normal University: Philosophy and Social Sciences Edition, 2010, 32(5):21-30. [郭洪纪. 青藏地区在中印地缘战略中的突出地位及国土安全分析. 青海师范大学学报: 哲学社会科学版,2010, 32(5): 21-30.][4] Gao Maofang, Qiu Jianjun. Characteristics and distribution law of major natural disasters in Tibetan Plateau. Journal ofArid Land Resources and Environment, 2011, 25(8): 101-106. [高懋芳, 邱建军. 青藏高原主要自然灾害特点及分布规律研究. 干旱区资源与环境, 2011, 25(8): 101-106.][5] Zhou Youwu, Guo Dongxin, Qiu Guoqing et al. Geocryology in China. Beijing: Science Press, 2000. [周幼吾, 郭东信,邱国庆等. 中国冻土. 北京: 科学出版社, 2000.][6] Li Shude, Cheng Guodong. Map of Permafrost Distribution over Qinghai-Tibet Plateau. Lanzhou: Gansu Cultural Press,1996. [李树德, 程国栋. 青藏高原冻土图. 兰州: 甘肃文化出版社, 1996.][7] Ouyang Bin, Che Tao, Dai Liyun et al. Estimation of mean daily land surface temperature over Tibetan Plateau basedon MODIS products. Journal of Glaciology and Geocryology, 2012, 34(2): 296-303. [欧阳斌, 车涛, 戴礼云等. 基于MODISLST产品估算青藏高原地区的日平均地表温度. 冰川冻土, 2012, 34(2): 296-303.][8] Wang Zhixia, Nan Zhuotong, Zhao Lin. The applicability of MODIS land surface temperature products to simulatingthe permafrost distribution over the Tibetan plateau. Journal of Glaciology and Geocryology, 2011, 33(1): 132-143. [王之夏, 南卓铜, 赵林. MODIS地表温度产品在青藏高原冻土模拟中的适用性评价. 冰川冻土, 2011, 33(1): 132-143.][9] Cheng Guodong, Wang Shaoling. On the zonation of high-altitude permafrost in China. Journal of Glaciology andGeocryology, 1982, 4(2): 1-17. [程国栋, 王绍令. 试论中国高海拔多年冻土带的划分. 冰川冻土, 1982, 4(2): 1-17.][10] Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. Map ofGlacier, Permafrost and Deserts in China (1:4,000,000). Beijing: SinoMaps Press, 2005. [中国科学院寒区旱区环境与工程研究所. 中国冰川冻土沙漠图. 北京: 地图出版社, 2005.][11] Nan Zhuotong, Li Shuxun, Cheng Guodong et al. Surface frost number model and its application to the Tibetanplateau. Journal of Glaciology and Geocryology, 2012, 34(1): 89-95. [南卓铜, 李述训, 程国栋等. 地面冻结数模型及其在青藏高原的应用. 冰川冻土, 2012, 34(1): 89-95.][12] Pang Qiangqiang, Zhao Lin, Li Shuxun. Influences of local factors on ground temperatures in permafrost regionsalong the Qinghai-Tibet Highway. Journal of Glaciology and Geocryology, 2011, 33(2): 349-356. [庞强强, 赵林, 李述训. 局地因素对青藏公路沿线多年冻土区地温影响分析. 冰川冻土, 2011, 33(2): 349-356.][13] Heginbottom J A. Permafrost mapping: A review. Progress in Physical Geography, 2002, 26(4): 623-642.[14] Li J, Sheng Y, Wu J et al. Probability distribution of permafrost along a transportation corridor in the northeasternQinghai Province of China. Cold Regions Science and Technology, 2009, 59(1): 12-18.[15] Zhang X, Nan Z, Wu J. Mountain permafrost distribution modeling using the Multivariate Adaptive Regression Spline(MARS) in the Wenquan area over the Qinghai-Tibet plateau. Science in Cold and Arid Regions, 2012, 4(5): 361-370.[16] Nelson F E, Outcalt S I. A computational method for prediction and regionalization of permafrost. Arctic and AlpineResearch, 1987, 19(3): 279-288.[17] Nelson F E, Anisimov O A. Permafrost zonation in Russia under anthropogenic climatic change. Permafrost andPeriglacial Processes, 1993, 4: 137-148.[18] Anisimov O A, Nelson F E. Permafrost distribution in the Northern Hemisphere under scenarios of climatic change.Global and Planetary Change, 1996, 14(1/2): 59-72.[19] Huang Peipei, Nan Zhuotong, Zhao Lin. Permafrost distribution simulation over the Qinghai-Tibet Plateau with theextended surface frost number model//Proceedings of Engineering and Environmental Research in Cold and AridRegions. Lanzhou: Lanzhou University Press, 2012: 240-252. [黄培培, 南卓铜, 赵林. 利用扩展的地面冻结数模型模拟青藏高原冻土分布//寒旱区工程与环境研究: 程国栋院士七十华诞学术研讨会文集. 兰州: 兰州大学出版社,2012: 240-252.][20] Cheng Guodong. Problems on zonation of high-altitude permafrost. Acta Geographica Sinica, 1984, 39(2): 185-193. [程国栋. 我国高海拔多年冻土地带性规律之探讨. 地理学报, 1984, 39(2): 185-193.][21] Nan Zhuotong, Li Shuxun, Liu Yongzhi. Mean annual ground temperature distribution on the Tibetan Plateau:permafrost distribution mapping and further application. Journal of Glaciology and Geocryology, 2002, 24(2):142-148. [南卓铜, 李述训, 刘永智. 基于年平均地温的青藏高原冻土分布制图及应用. 冰川冻土, 2002, 24(2):142-148.][22] Cheng Guodong, Zhao Lin. The problems associated with permafrost in the development of the Qinghai-XizangPlateau. Quaternary Sciences, 2000, 20(6): 521-531. [程国栋, 赵林. 青藏高原开发中的冻土问题. 第四纪研究, 2000,20(6): 521-531.] |
[1] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[2] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[3] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[4] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[5] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[6] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |
[7] | 王楠, 王会蒙, 杜云艳, 易嘉伟, 刘张, 涂文娜. 青藏高原人口流入流出时空模式研究[J]. 地理学报, 2020, 75(7): 1418-1431. |
[8] | 戚伟, 刘盛和, 周亮. 青藏高原人口地域分异规律及“胡焕庸线”思想应用[J]. 地理学报, 2020, 75(2): 255-267. |
[9] | 吴祥文, 臧淑英, 马大龙, 任建华, 李昊, 赵光影. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331. |
[10] | 范科科, 张强, 孙鹏, 宋长青, 余慧倩, 朱秀迪, 申泽西. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97. |
[11] | 高星, 康世昌, 刘青松, 陈鹏飞, 段宗奇. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义[J]. 地理学报, 2020, 75(1): 68-81. |
[12] | 郭超,蒙红卫,马玉贞,李丹丹,胡彩莉,刘杰瑞,雒聪文,王凯. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化[J]. 地理学报, 2019, 74(7): 1345-1362. |
[13] | 高兴川,曹小曙,李涛,吕敏娟. 1976-2016年青藏高原地区通达性空间格局演变[J]. 地理学报, 2019, 74(6): 1190-1204. |
[14] | 田原,余成群,查欣洁,高星,于明寨. 青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因[J]. 地理学报, 2019, 74(5): 975-991. |
[15] | 范科科, 张强, 孙鹏, 宋长青, 朱秀迪, 余慧倩, 申泽西. 青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报, 2019, 74(3): 520-533. |