[1] Lu Zi, Zhao Yahong, Wu Shifeng et al. The time distribution and guide analysis of visiting behavior of tourism website users. Acta Geographica Sinica, 2007, 62(6): 621-630. [路紫, 赵亚红, 吴士锋等. 旅游网站访问者行为的时间分布及导引分析. 地理学报, 2007, 62(6): 621-630.][2] Mao Xia, Xu Rongrong, Li Xinshuo et al. Fine grid dynamic features of population distribution in Shenzhen. Acta Geographica Sinica, 2010, 65(4): 443-453. [毛夏, 徐蓉蓉, 李新硕等. 深圳市人口分布的细网格动态特征. 地理学报, 2010, 65(4): 443-453.][3] Liu Yu, Xiao Yu, Gao Song et al. A review of human mobility research based on location aware devices. Geography and Geo-Information Science, 2011, 27(4): 8-13. [刘瑜, 肖昱, 高松等. 基于位置感知设备的人类移动研究综述. 地理与地理信息科学, 2011, 27(4): 8-13.][4] Chai Yanwei, Zhao Ying, Ma Xiujun et al. Mobile positioning method for spatial-temporal behavioral data collection and its geographical applications. Areal Research and Development, 2010, 29(6): 1-7. [柴彦威, 赵莹, 马修军等. 基于移动定位的行为数据采集与地理应用研究. 地域研究与开发, 2010, 29(6): 1-7.][5] Kwan M, Dijst M, Schwanen T. The interaction between ICT and human activity-travel behavior. Transportation Research Part A: Policy and Practice, 2007, 41(2): 121-124.[6] Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature, 2006, 439(7075): 462-465.[7] Brockmann D, Theis F. Money circulation, trackable items, and the emergence of universal human mobility patterns. Pervasive Computing, IEEE, 2008, 7(4): 28-35.[8] Kang C, Gao S, Lin X et al. Analyzing and geo-visualizing individual human mobility patterns using mobile call records//18th International Conference on Geoinformatics, 18-20 June 2010, Beijing.[9] Ahas R, Aasa A, Roose A et al. Evaluating passive mobile positioning data for tourism surveys: An Estonian case study. Tourism Management, 2008, 29(3): 469-486.[10] Ahas R, Aasa A, Mark ü et al. Seasonal tourism spaces in Estonia: Case study with mobile positioning data. Tourism Management, 2007, 28(3): 898-910.[11] Nobis C, Lenz B. Communication and mobility behaviour: A trend and panel analysis of the correlation between mobile phone use and mobility. Journal of Transport Geography, 2009, 17(2): 93-103.[12] Schwanen T, Kwan M. The Internet, mobile phone and space-time constraints. Geoforum, 2008, 39(3): 1362-1377.[13] Phithakkitnukoon S, Horanont T, Di Lorenzo G et al. Activity-aware map: Identifying human daily activity pattern using mobile phone data. Human Behavior Understanding, Lecture Notes in Computer Science, 2010, 6219: 14-25.[14] Ahas R, Aasa A, Silm S et al. Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C: Emerging Technologies, 2010, 18(1): 45-54.[15] González M C, Hidalgo C A, Barabási A. Understanding individual human mobility patterns. Nature, 2008, 453(7196): 779-782.[16] Piórkowski M. Sampling urban mobility through on-line repositories of GPS tracks//Proceedings of the 1st ACM International Workshop on Hot Topics of Planet-Scale Mobility Measurements, 22-22 June 2009, Kraków, Poland.[17] Candia J, González M C, Wang P et al. Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical, 2008, 41(22): 224015.[18] Sevtsuk A, Ratti C. Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. Journal of Urban Technology, 2010, 17(1): 41-60.[19] Yuan Y, Raubal M, Liu Y. Correlating mobile phone usage and travel behavior: A case study of Harbin, China. Computers, Environment and Urban Systems, 2012, 36(2): 118-130.[20] Song C, Qu Z, Blumm N et al. Limits of predictability in human mobility. Science, 2010, 327(5968): 1018-1021.[21] Sabbata S D, Mizzaro S, Vassena L. Where do you roll today? Trajectory prediction by space rank and physics models//Gartner G, Rehrl K. Location Based Services and Telecartography II. Heidelberg: Springer, 2009: 63-78.[22] Ratti C, Pulselli R M, Williams S et al. Mobile Landscapes: using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 2006, 33(5): 727-748.[23] Huang W, Dong Z, Zhao N et al. Anchor points seeking of large urban crowd based on the mobile billing data//Cao L, Feng Y, Zhong J. Advanced Data Mining and Applications. Heidelberg: Springer, 2010: 346-257.[24] Calabrese F, Colonna M, Lovisolo P et al. Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 141-151.[25] Strachan S, Williamson J, Murray-Smith R. Show me the way to Monte Carlo: Density-based trajectory navigation// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2007: 1245-1248.[26] Jiang Chengsheng, Wang Jinfeng, Cao Zhidong. A review of geo-spatial sampling theory. Acta Geographica Sinica. 2009, 64(3): 368-380. [姜成晟, 王劲峰, 曹志冬. 地理空间抽样理论研究综述. 地理学报, 2009, 64(3): 368-380.][27] Cao Zhidong, Wang Jinfeng, Li Lianfa et al. Strata efficiency and optimization strategy of stratified sampling on spatial population. Progress in Geography, 2008, 27(3): 152-160. [曹志冬, 王劲峰, 李连发等. 地理空间中不同分层 抽样方式的分层效率与优化策略. 地理科学进展, 2008, 27(3): 152-160.][28] Tobler W R. A computer movie simulating urban growth in the Detroit Region. Economic Geography, 1970, 46: 234-240.[29] Jiang B. Street hierarchies: A minority of streets account for a majority of traffic flow. Int. J. Geogr. Inf. Sci., 2009, 23 (8): 1033-1048.[30] Markkula J. Dynamic geographic personal data: New opportunity and challenge introduced by the location-aware mobile networks. Cluster Computing, 2001(4): 369-377.[31] Wang Jinfeng, Jiang Chengsheng, Li Lianfa et al. Space Sampling and Statistical Inference. Beijing: Science Press, 2009. [王劲峰, 姜成晟, 李连发等. 空间抽样与统计推断. 北京: 科学出版社, 2009.][32] Wang Jinfeng, Reis B Y, Hu Maogui et al. Area disease estimation based on sentinel hospital records. PLoS ONE, 2011, 6(8): e23428. |