地理学报 ›› 2012, Vol. 67 ›› Issue (9): 1246-1254.doi: 10.11821/xb201209009
俞洁辉1,2, 刘新圣1, 罗天祥1, 张林1
收稿日期:
2012-03-30
修回日期:
2012-06-15
出版日期:
2012-09-20
发布日期:
2012-09-20
通讯作者:
张林(1979-),男,云南人,副研究员,主要从事高山植物生态适应性研究.E-mail:zhanglin@itpcas.ac.cn
作者简介:
俞洁辉(1989-),女,浙江人,硕士研究生,主要从事微气象和生态建模方面的研究.E-mail:yujh@itpcas.ac.cn
基金资助:
国家重点基础研究项目(2010CB951301); 国家自然科学基金项目(31170451)
YU Jiehui1,2, LIU Xinsheng1, LUO Tianxiang1, ZHANG Lin1
Received:
2012-03-30
Revised:
2012-06-15
Online:
2012-09-20
Published:
2012-09-20
Supported by:
The National Key Projects for Basic Research of China, No.2010CB951301; National Natural Science Foundation of China, No.31170451
摘要: 本研究基于西藏念青唐古拉山北麓高山嵩草草甸海拔分布上限(5125 m) 地下10 cm和30 cm土壤温度和水分连续3 年(2008-2010 年) 的监测数据, 分析了草甸海拔分布上限土壤温度和未冻水含量的季节动态特征。结果表明:1) 土壤在4 月中下旬解冻, 10 月中下旬冻结;6-8月份土壤温度日振幅最大, 10 cm和30 cm分别为3.8℃和1.4℃;2) 土壤未冻水含量回升(下降) 在解冻(冻结) 开始后, 5-10 月份未冻水含量较高, 其中10 cm和30 cm 分别为2%~6%和15%~20%;3) 基于10 cm土壤温度推算的本地区高山嵩草草甸海拔分布上限的生长季在6 月初至8 月末或9 月初, 持续时间为80-87 天, 生长季平均土壤温度和含水量分别为6.78±0.73℃和4.14±0.91%, 生长季期间日最低温度集中在3~7℃之间(占90%以上天数);4) 与较低海拔处(4980 m) 相比, 高山嵩草草甸海拔分布上限处10 cm土壤温度和未冻水含量均明显偏低, 生长季8月份出现日最低温< 5℃的天数也明显增加。
俞洁辉, 刘新圣, 罗天祥, 张林. 念青唐古拉山北麓草甸海拔分布上限土壤温湿度的季节变化[J]. 地理学报, 2012, 67(9): 1246-1254.
YU Jiehui, LIU Xinsheng, LUO Tianxiang, ZHANG Lin. Seasonal Variations of Soil Temperature and Moisture at the Upper Limit of Alpine Meadow in North-facing Slope of the Nianqingtanggula Mountains[J]. Acta Geographica Sinica, 2012, 67(9): 1246-1254.
[1] Körner C. Alpine Plant Life: Functional Plant Ecology of Mountain Ecosystems. Berlin & Heidelberg: Springer-Verlag,2003.[2] Chapin F S III, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology. New York: Springer-Verlag,2002.[3] Billings W D, Mooney H A. Ecology of arctic and alpine plants. Biological Reviews of the Cambridge PhilosophicalSociety, 1968, 43: 481-529.[4] Anderson J E, Mcnaughton S J. Effects of low soil temperature on transpiration, photosynthesis, leaf relative watercontent, and growth among elevationally diverse plant populations. Ecology, 1973, 54(6): 1220-1233.[5] Billings W D, Bliss L C. An alpine snowbank environment and its effects on vegetation, plan development andproductivity. Ecology, 1959, 40: 388-397.[6] Isard S A. Factors influencing soil moisture and plant community distribution on Niwot Ridge, Front Range, Colorado,U.S.A. Arctic and Alpine Research, 1986, 18: 83-96.[7] Liu X S, Luo T X. Spatio-temporal variability of soil temperature and moisture across two contrasting timberlineecotones in the Sergyemla Mountains, Southeast Tibet. Arctic Antarctic and Alpine Research, 2011, 43(2): 229-238.[8] Goodrich L E. Some results of a numerical study of ground thermal regimes. Proceedings of the Third InternationalConference on Permafrost, National Research Council of Canada, Ottawa, 1978, 1: 29-34.[9] Tian Keming, Liu Jingshi, Kang Shichang et al. A primary study of the environment of frozen ground in the NamcoBasin, Tibet. Advances in Earth Science, 2006, 21(12): 1324-1332. [田克明, 刘景时, 康世昌等. 西藏纳木错流域冻土环境初步研究. 地球科学进展, 2006, 21(12): 1324-1332.][10] Yang Meixue, Yao Tandong, Wang Shaoling et al. The Features of soil temperature and moisture on northern TibetanPlateau. Geographical Research, 1999, 18(3): 312-317. [杨梅学, 姚檀栋, 王绍令等. 藏北高原土壤的温湿特征. 地理研究, 1999, 18(3): 312-317.][11] Yang Meixue, Yao Tandong, Gou Xiaohua. Soil freezing and thawing processes and the distribution of soil water andheat along Qinghai-Xizang Highway. Advances in Natural Science, 2000, 10(5): 443-450. [杨梅学, 姚檀栋, 勾晓华. 青藏公路沿线土壤的冻融过程及水热分布特征. 自然科学进展, 2000, 10(5): 443-450.][12] Yang M X, Yao T D, Gou X H et al. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. ChineseScience Bulletin, 2007, 52(1): 136-139.[13] Wan G N, Yang M X, Wang X J. Variations in soil temperature at BJ site on the central Tibetan Plateau. Journal ofMountain Science, 2012, 9(2): 274-285.[14] Wang Shoaling, Zhao Xinmin. Analysis of the ground temperatures monitored in permafrost regions on the TibetanPlateau. Journal of Glaciology and Geocryology, 1999, 21(2): 159-163. [王绍令, 赵新民. 青藏高原多年冻土区地温监测结果分析. 冰川冻土, 1999, 21(2): 159-163.][15] Wu Qingbai, Shen Yongping, Shi Bin. Relationship between frozen soil together with its water-heat process andecological environment in the Tibetan Plateau. Journal of Glaciology and Geocryology, 2003, 25(3): 250-255. [吴青柏,沈永平, 施斌. 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土, 2003, 25(3): 250-255.][16] Zhao Yizhou, Ma Yaoming, Ma Weiqiang et al. Variations of soil temperature and soil moisture in northern TibetanPlateau. Journal of Glaciology and Geocryology, 2007, 29(4): 578-583. [赵逸舟, 马耀明, 马伟强等. 藏北高原土壤温湿变化特征分析. 冰川冻土, 2007, 29(4): 578-583.][17] Körner C, Paulsen J. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 2004, 31:713-732.[18] Berdanier A B, Klein J A. Growing season length and soil moisture interactively constrain high elevation abovegroundnet primary production. Ecosystems, 2011, 14(6): 963-974.[19] Piao S, Ciais P, Friedlingstein P et al. Net carbon dioxide losses of northern ecosystems in response to autumnwarming. Nature, 2008, 451: 49-52.[20] Wang Hong, Li Xiaobing, Li Xia et al. The variability of vegetation growing season in the northern China based onNOAA NDVI and MSAVI from 1982 to 1999. Acta Ecologica Sinica, 2007, 27(2): 504-515. [王宏, 李晓兵, 李霞等.基于NOAA NDVI和MSAVI研究中国北方植被生长季变化. 生态学报, 2007, 27(2): 504-515.][21] Yu H Y, Luedeling E, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22151-22156.[22] Chen H, Zhu Q, Wu N et al. Delayed spring phenology on the Tibetan Plateau may also be attributable to otherfactors than winter and spring warming. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2011, 108: E93.[23] Yi S, Zhou Z. Increasing contamination might have delayed spring phenology on the Tibetan Plateau. Proceedings ofthe National Academy of Sciences of the United States of America, 2011, 108: E94.[24] Chapin F S III, Jefferies R L, Reynolds J F et al. Arctic plant physiological ecology in an ecosystem context. Arcticecosystems in a changing climate: An ecophysiological perspective. San Diego: Academic Press, 1992: 441-452.[25] Grabherr G, Gottfried M, Pauli H. Climate effects on mountain plants. Nature, 1994, 369: 448-450.[26] Zhao Xinquan. Alpine Meadow Ecosystem and Global Change. Beijing: Science Press, 2009. [赵新全. 高寒草甸生态系统与全球变化. 北京: 科学出版社. 2009.][27] Li Wenhua, Zhou Xingmin. The Qinghai-Tibet Plateau Ecosystem and Optimized Utilization Mode. Guangzhou:Guangdong Science and Technology Press, 1998. [李文华, 周兴民. 青藏高原生态系统及优化利用模式. 广州: 广东科技出版社, 1998.][28] Kang Shichang. Modern Environment Processes and Changes in the Nam Co Basin, Tibetan Plateau. Beijing: ChinaMeteorological Press, 2010. [康世昌. 青藏高原纳木错流域现代环境过程及其变化. 北京: 气象出版社, 2010.][29] Wu Yueru, Wang Weizhen, Jin Rui et al. The calibration of measurement of soil water content using Time DomainReflectometry (TDR). Journal of Glaciology and Geocryology, 2009, 31(2): 262-267. [吴月茹, 王维真, 晋锐等. TDR测定土壤含水量的标定研究. 冰川冻土, 2009, 31(2): 262- 267.][30] Chapin F S III. Phosphate absorption capacity and acclimation potential in plants along a latitudinal gradient. Science,1974, 183: 521-523.[31] Vapaavuori E M, Rikala R, Ryypp? A. Effects of root temperature on growth and photosynthesis in conifer seedlingsduring shoot elongation. Tree Physiology, 1992, 10: 217-230.[32] Domisch T, Finér L, Lehto T. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinussylvestris) seedlings at the beginning of the growing season. Tree Physiology, 2001, 21: 465-472.[33] Landhausser S M, DesRochers A, Lieffers V J. A comparison of growth and physiology in Picea glauca and Populustremuloides at different soil temperatures. Canadian Journal of Forest Research, 2001, 31: 1922-1929.[34] Walther A, Linderholm H W. A comparison of growing season indices for the Greater Baltic Area. InternationalJournal of Biometeorology, 2006, 51(2): 107-118.[35] Linderholm H W, Walther A, Chen D L. Twentieth-century trends in the thermal growing season in the Greater BalticArea. Climatic Change, 2008, 87(3/4): 405-419.[36] Liu B H, Henderson M, Zhang Y D et al. Spatiotemporal change in China's climatic growing season: 1955-2000.Climatic Change, 2010, 99(1/2): 93-118.[37] Li Maoshan, Ma Yaoming, Hirohiko Ishikawa et al. Characteristics of micrometeorological elements near surface andsoil on the northern slope of Mt. Qomolangma Area. Plateau Meteorology, 2007, 26(6): 1263-1268. [李茂善, 马耀明,Hirohiko Ishikawa 等. 珠穆朗玛峰北坡地区近地层及土壤微气象要素分析. 高原气象, 2007, 26(6): 1263-1268.][38] Wang Chenghai, Shang Dacheng. Effect of the variation of the soil temperature and moisture in the transition fromdry-season to wet-season over northern Tibet Plateau. Plateau Meteorology, 2007, 26(4): 677-685. [王澄海, 尚大成. 藏北高原土壤温、湿度变化在高原干湿季转换中的作用. 高原气象, 2007, 26(4): 677-685.][39] Yu Xiaozhou, Yuan Fenghui, Wang Anzhi et al. Effects of snow cover on soil temperature in broad-leaved Korean pineforest in Changbai Mountains. Chinese Journal of Applied Ecology, 2010, 21(12): 3015-3020. [于小舟, 袁凤辉, 王安志等. 积雪对长白山阔叶红松林土壤温度的影响. 应用生态学报, 2010, 21(12): 3015-3020.][40] Liu Xinsheng. Microclimate and its effect on stem radius growth of trees across two contrasting timberline ecotones,Southeast Tibet [D]. Beijing: Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2011. [刘新圣. 藏东南两树种林线微气候特征及其对树木生长的影响[D]. 北京: 中国科学院青藏高原研究所, 博士学位论文. 2011.][41] Wang Zhong. Mechanisms for altitudinal variations in net primary productivity of alpine meadow in central TibetanPlateau [D]. Beijing: Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2011. [王忠. 念青唐古拉山南坡高寒草甸生产力沿海拔梯度的变化机理研究[D]. 北京: 中国科学院青藏高原研究所, 博士学位论文. 2011.][42] He Jicheng, Luo Tianxiang, Xu Yuqing. Characteristics of eco-climate at smith fir timberline in the SergyemlaMountains, Southeast Tibetan Plateau. Acta Ecologia Sinica, 2009, 29(1): 37-46.[何吉成, 罗天祥, 徐雨晴. 藏东南色季拉山急尖长苞冷杉(Abies georgei var. smithii) 林线的生态气候特征. 生态学报, 2009, 29(1): 37-46.][43] Menzel A, Fabian P. Growing season extended in Europe. Nature, 1999, 397: 659.[44] Peñuelas J, Filella I, Comas P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region.Global Change Biology, 2002, 8(6): 531-544.[45] Shen M, Tang Y, Chen J et al. Influences of temperature and precipitation before the growing season on springphenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agriculture and Forestry Meteorology,2011, 151(12): 1711-1722.[46] Wang X, Piao S, Ciais P et al. Spring temperature change and its implication in the change of vegetation growth inNorth America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America,2011, 108(4): 1240-1245.[47] Hoch G, Popp M, Körner C. Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation ofgrowth at the Swiss treeline. Oikos, 2002, 98: 361-374.[48] Shi P, Körner C, Hoch G. End of season carbon supply status of woody species near treeline in western China. Basicand Applied Ecology, 2006, 7: 370-377.[49] Li Mingcai. Leaf δ13C and related physio-ecological characteristics across different plant life forms at alpinetimberline, southeastern Tibetan Plateau [D]. Beijing: Institute of Tibetan Plateau Research, Chinese Academy ofSciences, 2007. [李明财. 藏东南高山林线不同生活型植物δ13C值及相关生理生态学特性研究[D]. 北京: 中国科学院青藏高原研究所, 博士学位论文. 2007.][50] Luo T X, Zhang L, Zhu H Z et al. Correlations between net primary productivity and foliar carbon isotope ratio acrossa Tibetan ecosystem transect. Ecography, 2009, 32: 526-538. |
[1] | 周玉科. 中国东北地区植被生产力控制因素分析[J]. 地理学报, 2020, 75(1): 53-67. |
[2] | 范科科, 张强, 孙鹏, 宋长青, 余慧倩, 朱秀迪, 申泽西. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97. |
[3] | 崔颖颖, 朱立平, 鞠建廷, 罗伦, 王永杰. 基于流量监测的西藏东南部然乌湖水量平衡季节变化及其补给过程分析[J]. 地理学报, 2017, 72(7): 1221-1234. |
[4] | 王志强, 刘宝元, 张岩. 不同植被类型对厚层黄土剖面水分含量的影响[J]. 地理学报, 2008, 63(7): 703-713. |
[5] | 张文纲,李述训,庞强强. 近45 年青藏高原土壤温度的变化特征分析[J]. 地理学报, 2008, 63(11): 1151-1159. |
[6] | 谢爱红, 秦大河, 任贾文, 秦翔, 康世昌, 蒋友严. NCEP/NCAR 再分析资料在珠穆朗玛峰 —念青唐古拉山脉气象研究中的可信性[J]. 地理学报, 2007, 62(3): 268-278. |
[7] | 段建平, 任贾文, 秦翔, 李月芳. 珠穆朗玛峰地区雪冰中重金属浓度与季节变化[J]. 地理学报, 2007, 62(1): 22-29. |
[8] | 汪权方,李家永,陈百明. 基于地表覆盖物光谱特征的土地覆被分类系统 ——以鄱阳湖流域为例[J]. 地理学报, 2006, 61(4): 359-368. |
[9] | 朴世龙,方精云. 1982-1999年我国陆地植被活动对气候变化响应的季节差异[J]. 地理学报, 2003, 58(1): 119-125. |
[10] | 王军, 傅伯杰, 邱扬, 陈利顶. 黄土丘陵小流域土壤水分的时空变异特征——半变异函数[J]. 地理学报, 2000, 55(4): 428-438. |
[11] | 孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究[J]. 地理学报, 2000, 55(1): 36-45. |
[12] | 康世昌, 秦大河, 姚檀栋, CameronP.Wake. 希夏邦马峰冰川粒雪中环境季节变化记录研究[J]. 地理学报, 2000, 55(1): 55-65. |
[13] | 王军, 傅伯杰. 黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J]. 地理学报, 2000, 55(1): 84-91. |
[14] | 傅伯杰, 陈利顶, 马克明. 黄土丘陵区小流域土地利用变化对生态环境的影响——以延安市羊圈沟流域为例[J]. 地理学报, 1999, 54(3): 241-246. |
[15] | 李俊, 于沪宁, 刘苏峡. 冬小麦水分利用效率及其环境影响因素分析[J]. 地理学报, 1997, 52(6): 551-560. |