地理学报 ›› 2012, Vol. 67 ›› Issue (9): 1201-1212.doi: 10.11821/xb201209005

• 农业地理 • 上一篇    下一篇

基于分形理论的灌溉水有效利用系数空间尺度变异

王小军1,2, 张强1, 古璇清2   

  1. 1. 中山大学水资源与环境系, 广州510275;
    2. 广东省水利水电科学研究院, 广州510635
  • 收稿日期:2012-05-09 修回日期:2012-06-15 出版日期:2012-09-20 发布日期:2012-11-09
  • 通讯作者: 张强,男,教授,博士生导师,主要从事流域气象水文学研究、旱涝灾害机理、流域地表水文过程及其对气候变化的响应机制与机理以及流域生态需水等领域的研究工作。E-mail:zhangq68@mail.sysu.edu.cn E-mail:zhangq68@mail.sysu.edu.cn
  • 作者简介:王小军(1979-),男,甘肃宁县人,在读博士,主要从事农业节水灌溉和水土保持研究。E-mail:wxj1999_2003@163.com
  • 基金资助:

    水利部公益性行业科研专项项目(200901074); 国家自然科学基金项目(41071020); 广东省水利厅资助项目联合资助

Fractal-based Effective Utilization Coefficient of Irrigation Water Space Scale Variability

WANG Xiaojun1,2, ZHANG Qiang1, GU Xuanqing2   

  1. 1. Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong Institute of Water Resources and Hydropower Research, Guangzhou 510610, China
  • Received:2012-05-09 Revised:2012-06-15 Online:2012-09-20 Published:2012-11-09
  • Supported by:

    Ministry of Public Sector Research and Special Projects, No.200901074; National Natural Science Foundation of China, No.41071020; Project from Guangdong Hydraulic Bureau

摘要: 基于2010 年度广东省75 处样点灌区的实测资料和遥感图像, 应用分形理论, 采用网格盒维数法计算了各样点灌区盒维数, 结果表明:广东省灌区具有明显的分形特征, 盒维数介于1.0004~1.675 之间, 分维数均值为1.308, 形状指数均值为0.335, 都随灌区规模呈同步减小趋势。不同规模灌区盒维数大型灌区(1.442) > 中型灌区(1.287) > 小型灌区(1.195)。灌溉水有效利用系数与空间分形特征诸因子中以非空网格对数值最高, 相关性达到0.941。基于此, 建立了不同网格尺度下的灌区面积与灌溉水有效利用系数和盒维数空间尺度变异函数。同时, 从影响灌溉水有效利用系数的众多因素中, 选取了工程评价值、盒子维数、灌区形状指数、参考作物蒸发蒸腾量ET0 和当年降水量5 项指标进行了空间格局影响因素分析, 结合灰关联计算结果表明:空间各影响因素中以工程评价因子的关联度最高, 达到0.8478, 其次为形态特征因子, 自然气象因子影响最小。尝试利用分形理论为不同面积尺度灌区灌溉水有效利用系数的空间变异规律分析和尺度转换提供一种新的思路, 该结果对于指导灌区投资改造和规划建设, 具有较强的理论和应用价值。

关键词: 灌溉水有效利用系数, 尺度, 分形理论, 盒维数, 空间变异

Abstract: Based on the measured data and remote sensing images of 75 sample irrigation areas of Guangdong province in 2010, grid box dimension method was used to analyze the box dimension of sample irrigation area. The results show that irrigation area of the province is subjected to fractal characteristics with the box dimension ranging from 1.0004 to 1.675, the mean of fractal dimension of 1.308 and mean shape index of 0.335, and shows a decreasing trend with the irrigation area scale. The box dimension of irrigation area at different scales is listed in the order of large-scale irrigation area (1.442) > medium-sized irrigation area (1.287) > small-scale irrigation area (1.195). The most significant factor is logarithm of non-empty grid with the correlation coefficient of 0.941. In this case, a variation function of spatial scale between irrigation district area, the effective utilization coefficient of irrigation water and the box dimension under different grid scales is achieved. Meanwhile, five indicators related to many influencing factors, the value of the project evaluation, box dimension, irrigation area shape index, the reference crop evapotranspiration ET0 and precipitation are analyzed in this study. And the factors influencing the spatial pattern are also thoroughly investigated. The above-mentioned analysis and also those by the gray relational calculation show that the highest correlation of spatial influence factors is the engineering evaluation of 0.8478, followed by topographical features and meteorological factors.

Key words: the effective utilization coefficient of irrigation water, scale, fractal theory, box dimension, spatial variability