地理学报 ›› 2012, Vol. 67 ›› Issue (9): 1155-1164.doi: 10.11821/xb201209001
• 生态与环境 • 下一篇
郭元喜1, 龚道溢1, 汪文珊1, 张自银2, 毛睿1
收稿日期:
2012-05-16
修回日期:
2012-06-12
出版日期:
2012-09-20
发布日期:
2012-09-20
作者简介:
郭元喜(1983-),女,山东章丘市人,博士研究生,主要从事气候变化研究。E-mail:guoyx@mail.bnu.edu.cn
基金资助:
国家重点基础研究发展计划(973 计划) (2012CB955302); 国家自然科学基金项目(40975043)
GUO Yuanxi1, GONG Daoyi1, WANG Wenshan1, ZHANG Ziyin2, MAO Rui1
Received:
2012-05-16
Revised:
2012-06-12
Online:
2012-09-20
Published:
2012-09-20
Supported by:
National Basic Research Program of China (973 Program), No.2012CB955302; National Natural Science Foundation of China, No.40975043
摘要: 利用2000-2010 年秋季中国中东部83 个重点城市的PM10浓度数据以及其中63 个城市的逐日气象资料, 分析了PM10浓度的时空变化以及晴空条件下PM10浓度与日气温之间的关系, 讨论了不同云量条件下二者关系的稳定性以及辐射的相应变化。结果表明:(1) 近11 年来, 秋季PM10浓度呈现下降趋势, 全部天气条件下和晴空条件下的线性趋势值分别为-2.87 μg·m-3/年、-4.92 μg·m-3/年;空间分布上, 中国中东部重点城市的秋季PM10浓度普遍下降, 其中华北地区的下降最快最显著。(2) 秋季PM10浓度与日气温的波动之间存在显著相关, 定量统计表明:当PM10浓度偏高10 μg·m-3时, 日最高气温、日最低气温和日平均气温分别偏低0.15℃、0.14℃和0.16℃, 同时气温日较差减小0.01℃。(3) 秋季日气温的上述变化可能主要与气溶胶的直接效应有关。PM10增多会造成地面总辐射和地表净辐射的显著减少, 进而造成日最高气温、日平均气温的显著下降;同时, PM10增多对近地面的影响总体上是致冷效果。
郭元喜, 龚道溢, 汪文珊, 张自银, 毛睿. 中国中东部秋季PM10时空变化及其与日气温的关系[J]. 地理学报, 2012, 67(9): 1155-1164.
GUO Yuanxi, GONG Daoyi, WANG Wenshan, ZHANG Ziyin, MAO Rui. Spatiotemporal Variation of PM10 Concentration and Its Relationship with Autumn Daily Temperature over Central and Eastern China[J]. Acta Geographica Sinica, 2012, 67(9): 1155-1164.
[1] Charlson R J, Schwartz S E, Hales J M et al. Climate forcing by anthropogenic aerosols. Science, 1992, 255(5043):423-430.[2] Ramanathan V, Crutzen P J, Kiehl J T et al. Aerosols, climate, and the hydrological cycle. Science, 2001, 294(5549):2119-2124.[3] Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system. Nature, 2002, 419(6903):215-223.[4] Anderson T L, Charlson R J, Schwartz S E et al. Climate forcing by aerosols: A hazy picture. Science, 2003, 300(5622): 1103-1104.[5] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. NewYork: Wiley-Interscience, 2006: 1054-1089.[6] Levin Z, Cotton W R. Aerosol Pollution Impact on Precipitation: A Scientific Review. Berlin: Springer-Verlag, 2008:205-294.[7] Menon S, Hansen J, Nazarenko L et al. Climate effects of black carbon aerosols in China and India. Science, 2002, 297(5590): 2250-2253.[8] Huang Y. Assessments of the direct and indirect effects of anthropogenic aerosols on regional precipitation over EastAsia using a coupled regional climate-chemistry-aerosol model. Atlanta: Georgia Institute of Technology, 2005.[9] Huang Y, Dickinson R E, Chameides W L et al. Impact of aerosol indirect effect on surface temperature over East Asia.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4371-4376.[10] Zhao Wei, Liu Hongnian, Wu Jian. Radiative and climate effects of dust aerosol in springs over China. Journal ofNanjing University: Natural Sciences, 2008, 44(6): 598-607. [赵伟, 刘红年, 吴涧. 中国春季沙尘气溶胶的辐射效应及对气候影响的研究. 南京大学学报: 自然科学, 2008, 44(6): 598-607.][11] Holben B N, Eck T F, Slutsker I et al. AERONET: A federated instrument network and data archive for aerosolcharacterization. Remote Sensing of Environment, 1998, 66(1): 1-16.[12] Welton E J, Campbell J R, Spinhirne J D et al. Global monitoring of clouds and aerosols using a network ofmicro-pulse lidar systems. Proceedings of the Society of Photo-optical Instrumentation Engineers, 2001, 4153: 151-158.[13] Murayama T, Sugimoto N, Uno I et al. Ground-based network observation of asian dust events of April 1998 in EastAsia. Journal of Geophysical Research, 2001, 106(D16): 18345-18360.[14] Mattis I, Ansmann A, Muller D et al. Multiyear aerosol observations with dual-wavelength Raman Lidar in theframework of EARLINET. Journal of Geophysical Research, 2004, 109(D13): 1-15.[15] Bellouin N, Boucher O, Haywood J et al. Global estimate of aerosol direct radiative forcing from satellitemeasurements. Nature, 2005, 438(7071): 1138-1141.[16] Chung C E, Ramanathan V, Kim D et al. Global anthropogenic aerosol direct forcing derived from satellite andground-based observations. Journal of Geophysical Research, 2005, 110(D24): 1-17.[17] Takemura T, Nozawa T, Emori S et al. Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. Journal of Geophysical Research, 2005, 110(D2): 1-16.[18] Textor C, Schulz M, Guibert S et al. The effect of harmonized emissions on aerosol properties in global models: AnAer℃om experiment. Atmospheric Chemistry and Physics, 2007, 7(17): 4489-4501.[19] Clarke A, Kapustin V. Hemispheric aerosol vertical profiles. Science, 2010, 329(5998): 1488-1492.[20] IPCC. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press, 2007: 153-180.[21] NOAA. Aerosols and Climate Fact Sheet. 2011, http://www.nrc.noaa.gov/stateofsciencefactsheets.html.[22] Gong Daoyi, Han Hui. Extreme climate events over northern China during the last about 50 years. Acta GeographicaSinica, 2004, 59(2): 230-238. [龚道溢, 韩晖. 华北农牧交错带夏季极端气候的趋势分析. 地理学报, 2004, 59(2):230-238.][23] Gong D Y, Ho C H, Chen D L et al. Weekly cycle of aerosol-meteorology interaction over China. Journal ofGeophysical Research, 2007, 112(D22): 1-9.[24] China Meteorological Administration. Specifications for Surface Meteorological Observation. Beijing: ChinaMeteorological Press, 2003: 14. [中国气象局, 地面气象观测规范. 北京: 气象出版社, 2003: 14.][25] Qian Y, Wang W, Leung L et al. Variability of solar radiation under cloud-free skies in China: The role of aerosols.Geophysical Research Letters, 2007, 34(12): 1-5.[26] Shao Zhenyan, Zhou Tao, Shi Peijun et al. Spatial-temporal characteristics of the influence atmospheric pollutant onsurface solar radiation changes for Chinese key cities. Plateau Meteorology, 2009, 28(5): 1105-1114. [邵振艳, 周涛, 史培军等. 大气污染对中国重点城市地面总辐射影响的时空特征. 高原气象, 2009, 28(5): 1105-1114.][27] Stone R S, Augustine J A, Dutton E G et al. Empirical determinations of the longwave and shortwave radiativeforcing efficiencies of wildfire smoke. Journal of Geophysical Research, 2011, 116(D12): 1-9.[28] Sheng Peixuan, Mao Jietai, Li Jianguo et al. Atmospheric Physics. Beijing: Peking University Press, 2009: 72-83. [盛裴轩, 毛节泰, 李建国等. 大气物理学. 北京: 北京大学出版社, 2009: 72-83.] |
[1] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[2] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[3] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[4] | 葛全胜, 朱会义. 两千年来中国自然与人文地理环境变迁及启示[J]. 地理学报, 2021, 76(1): 3-14. |
[5] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |
[6] | 崔耀平, 李楠, 付一鸣, 陈良雨. 中美俄加陆域碳汇对人为增温的消减贡献[J]. 地理学报, 2021, 76(1): 167-177. |
[7] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[8] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[9] | 敖荣军, 常亮. 基于结构方程模型的中国县域人口老龄化影响机制[J]. 地理学报, 2020, 75(8): 1572-1584. |
[10] | 宋周莺, 祝巧玲. 中国边境地区的城镇化格局及其驱动力[J]. 地理学报, 2020, 75(8): 1603-1616. |
[11] | 马春玥, 买买提·沙吾提, 姚杰, 古丽努尔·依沙克. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710. |
[12] | 郑景云, 张学珍, 刘洋, 郝志新. 过去千年中国不同区域干湿的多尺度变化特征评估[J]. 地理学报, 2020, 75(7): 1432-1450. |
[13] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[14] | 瞿诗进, 胡守庚, 李全峰. 中国城市建设用地转型阶段及其空间格局[J]. 地理学报, 2020, 75(7): 1539-1553. |
[15] | 葛全胜, 方创琳, 江东. 美丽中国建设的地理学使命与人地系统耦合路径[J]. 地理学报, 2020, 75(6): 1109-1119. |