地理学报 ›› 2012, Vol. 67 ›› Issue (3): 346-356.doi: 10.11821/xb201203006
温兆飞1,2, 张树清1, 白静1,2, 丁长虹3, 张策4
收稿日期:
2011-07-19
修回日期:
2011-10-17
出版日期:
2012-03-20
发布日期:
2012-03-20
通讯作者:
张树清(1964-), 男, 吉林白山人, 博士, 研究员, 博士生导师, 主要从事3D/4D地理信息系统理论建模, 分析与计算以及遥感信息提取方面的研究。E-mail: zhangshuqing@neigae.ac.cn
基金资助:
WEN Zhaofei1,2, ZHANG Shuqing1, BAI Jing1,2, DING Changhong3, ZHANG Ce4
Received:
2011-07-19
Revised:
2011-10-17
Online:
2012-03-20
Published:
2012-03-20
Supported by:
摘要: 农情遥感监测需要高时间分辨率的遥感数据,目前这些数据大都为中低空间分辨率影像。在这些尺度下,像元内部往往是异质的,从而影响农情参数反演精度。因此分析和表达农田景观空间异质性和最优尺度选择对遥感农情监测质量的提高具有重要的应用价值。选取建三江农垦区四种典型农田景观为研究点,Landsat/TM NDVI为实验数据,利用实验变异函数对四种景观类型的各向空间异质性进行了分析, 而后通过变异函数模型拟合,定量分析了各个研究点的整体空间异质性,并在此基础上进行了研究区遥感监测最优尺度选择。研究表明:(1) 基于实验变异函数的结构分析方法,可定性地认识空间异质性的大小和方向,进而挖掘出其背后的自然和人为驱动因素。(2) 对实验变异函数进行拟合分析,可定量地刻画不同景观格局各自的空间异质性特性。此外,基于变异函数对空间异质性的定量表达,讨论了利用积分变程A结合Nyquist-Shannon采样定理进行最优尺度选择的方法。
温兆飞, 张树清, 白静, 丁长虹, 张策. 农田景观空间异质性分析及遥感监测最优尺度选择——以三江平原为例[J]. 地理学报, 2012, 67(3): 346-356.
WEN Zhaofei, ZHANG Shuqing, BAI Jing, DING Changhong, ZHANG Ce. Agricultural Landscape Spatial Heterogeneity Analysis and Optimal Scale Selection: An Example Applied to Sanjiang Plain[J]. Acta Geographica Sinica, 2012, 67(3): 346-356.
[1] Meng Jihua, Wu Bingfang, Li Qiangzi et al. Research advances and outlook of crop monitor ing with remote sensing at field level. Remote Sensing Information, 2010, (3): 122-128. [蒙继华, 吴炳方, 李强子等. 农田农情参数遥感监测进展及应用展望. 遥感信息, 2010, (3): 122-128.] [2] Friedl M A. Examining the Effects of Sensor Resolution and Sub-pixel Heterogeneity on Spetral Vegetation Indices: Implications for Biophysical Modeling. Boca Raton: Lewis Publishers, 1997. [3] Weiss M, Baret F, Myneni R B et al. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie, 2000, 20(1): 3-22. [4] Garrigues S, Allard D, Baret F et al. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sensing of Environment, 2006, 103(1): 81-96. [5] Garrigues S, Allard D, Baret F et al. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sensing of Environment, 2006, 105(4): 286-298. [6] Ming Dongping, Wang Qun, Yang Jianyu. Spatial scale of remote sensing image and selection of optimal spatial resolution. Journal of Remote Sensing, 2008, 12(4): 529-537. [明冬萍, 王群, 杨建宇. 遥感影像空间尺度特性与最佳空间分辨率选择. 遥感学报, 2008, 12(4): 529-537.] [7] Merlin O, Chehbouni A, Kerr Y H et al. A downscaling method for distributing surface soil moisture within a microwave pixel: Application to the Monsoon '90 data. Remote Sensing of Environment, 2006, 101(3): 379-389. [8] Csillag F, Kabos S. Wavelets, boundaries, and the spatial analysis of landscape pattern. Ecoscience, 2002, 9(2): 177-190. [9] Lyons T J, Halldin S. Surface heterogeneity and the spatial variation of fluxes. Agricultural and Forest Meteorology, 2004, 121(3/4): 153-165. [10] Kolasa J, Rollo C. Ecological Heterogeneity. New York: Springer-Verlag, 1991. [11] Li Habin, Wang Zhengquan, Wang Qingcheng. Theory and methodology of spatial heterogeneity quantification. Chinese Journal of Applied Ecology, 1998, 9(6): 651-657. [李哈滨, 王政权, 王庆成. 空间异质性定量研究理论与方法. 应用生态学报, 1998, 9(6): 651-657.] [12] Garrigues S, Allard D, Baret F et al. Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sensing of Environment, 2008, 112(1): 216-230. [13] Wan Li. Variogram-based quantitative analysis of the spatial heterogeneity. Statistics and Decision, 2006, (2): 26-27. [万丽. 基于变异函数的空间异质性定量分析. 统计与决策, 2006, (2): 26-27.] [14] Curran P J. The semivariogram in remote sensing: An introduction. Remote Sensing of Environment, 1988, 24: 493-507. [15] Woodcock C E, Strahler A H, Jupp D L B. The use of variograms in remote sensing: II. Real digital images. Remote Sensing of Environment, 1988, 25(3): 349-379. [16] Oliver M A, Shine J A, Slocum K R. Using the variogram to explore imagery of two different spatial resolutions. International Journal of Remote Sensing, 2005, 26(15): 3225-3240. [17] Woodcock C E, Strahler A H. The factor of scale in remote sensing. Remote Sensing of Environment, 1987, 21(3): 311-332. [18] Atkinson P M, Aplin P. Spatial variation in land cover and choice of spatial resolution for remote sensing. International Journal of Remote Sensing, 2004, 25(18): 3687-3702. [19] Atkinson P M, Curran P J. Defining an optimal size of support for remote sensing investigations. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(3): 768-776. [20] Bai Yanche, Wang Jinfeng. Exploring the scale effect in thematic classification of remotely sensed data:the statistical separability-based method. Remote Sensign Technology and Application, 2004, 19(6): 443-449. [柏延臣, 王劲峰. 基于统计可分性的遥感数据专题分类尺度效应分析. 遥感技术与应用, 2004, 19(6): 443-449.] [21] Statistical Yearbook of Farm Jiansanjiang. Heilongjiang Province Sanjiang Farm Statistical Yearbook Editorial Department, 2002. [建三江农垦统计年鉴. 黑龙江省建三江农垦统计年鉴编辑部, 2002.] [22] Records of Jiansanjiang Farm. Jiansanjiang Branc, 2004. [建三江农垦志. 建三江分局, 2004.] [23] Zhang Xixiang, Wu Jianping. Sanjiang Nature Reserve, Natural Resources Research. Harbin: Northeast Forestry University Press, 2003. [张喜祥, 吴建平. 三江自然保护区自然资源研究. 哈尔滨: 东北林业大学出版社, 2003.] [24] Solutions I V I. Atmospheric Correction Module: QUAC and FLAASH User's Guide, 2009. [25] Deng Shubin. ENVI Remote Sensing Image Processing. Beijing: Science Press, 2010. [邓书斌. ENVI遥感图像处理方法. 北京: 科学出版社, 2010.] [26] Zhang Renduo. Spatial Variation of the Theory and Application. Beijing: Science Press, 2005. [张仁铎. 空间变异理论及应用. 北京: 科学出版社, 2005.] [27] Tarnavsky E, Garrigues S, Brown M E. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment, 2008, 112(2): 535-549. [28] Curran P J, Atkinson P M. Geostatistics and remote sensing. Progress in Physical Geography, 1998, 22(1): 61-78. [29] Woodcock C E, Strahler A H, Jupp D L B. The use of variograms in remote sensing: I. Scene models and simulated images. Remote Sensing of Environment, 1988, 25(3): 323-348. [30] Li Xiaowen, Cao Chunxiang, Chang Chaoyi. The first law of geography and spatial-temporal proximity. Chinese Jounal of Nature, 2006, 29(2): 69-71. [李小文, 曹春香, 常超一. 地理学第一定律与时空邻近度的提出. 自然杂志, 2006, 29(2): 69-71.] [31] Chilès J, Delfiner P. Geostatistics: Modeling Spatial Uncertainty. New York: John Wiley and Sons, 1999. [32] Webster R. Quantitative spatial analysis of soil in the field. Advances in Soil Science, 1985, 3(1): 1-70. [33] Johnston K, Hoef J M V, Krivoruchko K et al. Using ArcGIS Geostatistical Analyst. ESRI Press, 2001. [34] Matheron G. Principles of geostatistics. Economic Geology, 1963, 58: 1246-1266. [35] Wang Zhengquan. Geostatistics and Its Application in Ecology. Beijing: Science Press, 1999. [王政权. 地统计学及其在生态学中的应用. 北京: 科学出版社, 1999.] [36] Pannatier Y. VARIOWIN: Software for Spatial Data Analysis in 2D. New York: Springer-Verlag, 1996. [37] Lantuéjoul C. Geostatistical Simulation: Models and Algorithms. Berlin: Springer-Verlag, 2002. [38] Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing. San Diego: Academic Press, 2007. [39] Fu Qiang. Different ridge cultivation on soybean yield to the impact of research. Heilongjiang Agricultural Sciences, 2011, (4): 29-31. [符强. 不同垄向栽培对大豆产量影响的研究. 黑龙江农业科学, 2011, (4): 29-31.] [40] Shannon C. Communication in the presence of noise. Proc. Institute of Radio Engineers, 1949, 37(1): 10-21. |
[1] | 徐晨晨, 叶虎平, 岳焕印, 谭翔, 廖小罕. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75(5): 917-930. |
[2] | 王晓茹, 唐志光, 王建, 王欣, 魏俊锋. 基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测[J]. 地理学报, 2020, 75(3): 470-484. |
[3] | 姚永慧, 张俊瑶, 索南东主. 南北过渡带1∶5万植被类型图遥感制图案例研究[J]. 地理学报, 2020, 75(3): 620-630. |
[4] | 周成虎, 孙九林, 苏奋振, 杨晓梅, 裴韬, 葛咏, 杨雅萍, 张岸, 廖小罕, 陆锋, 高星, 付东杰. 地理信息科学发展与技术应用[J]. 地理学报, 2020, 75(12): 2593-2609. |
[5] | 余姝辰, 王伦澈, 夏卫平, 余德清, 李长安, 贺秋华. 清末以来洞庭湖区通江湖泊的时空演变[J]. 地理学报, 2020, 75(11): 2346-2361. |
[6] | 赵贵宁, 张正勇, 刘琳, 徐丽萍, 王璞玉, 李丽, 宁珊. 基于多源遥感数据的玛纳斯河流域冰川物质平衡变化[J]. 地理学报, 2020, 75(1): 98-112. |
[7] | 刘文超, 刘纪远, 匡文慧. 陕北地区退耕还林还草工程土壤保护效应的时空特征[J]. 地理学报, 2019, 74(9): 1835-1852. |
[8] | 隆院男,闫世雄,蒋昌波,吴长山,李志威,唐蓉. 基于多源遥感影像的洞庭湖地形提取方法[J]. 地理学报, 2019, 74(7): 1467-1481. |
[9] | 涂建军,唐思琪,张骞,吴越,罗运超. 山地城市格局对餐饮业区位选择影响的空间异质性[J]. 地理学报, 2019, 74(6): 1163-1177. |
[10] | 高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543. |
[11] | 杨成德, 王欣, 魏俊峰, 刘琼欢, 鲁安新, 张勇, 唐志光. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556. |
[12] | 范科科,张强,史培军,孙鹏,余慧倩. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估[J]. 地理学报, 2018, 73(9): 1778-1791. |
[13] | 陈玮彤,张东,崔丹丹,吕林,谢伟军,施顺杰,侯泽宇. 基于遥感的江苏省大陆岸线岸滩时空演变[J]. 地理学报, 2018, 73(7): 1365-1380. |
[14] | 曹小曙, 徐建斌. 中国省际边界区县域经济格局及影响因素的空间异质性[J]. 地理学报, 2018, 73(6): 1065-1075. |
[15] | 刘纪远,宁佳,匡文慧,徐新良,张树文,颜长珍,李仁东,吴世新,胡云锋,杜国明,迟文峰,潘涛,宁静. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(5): 789-802. |