地理学报 ›› 2012, Vol. 67 ›› Issue (3): 337-345.doi: 10.11821/xb201203005
刘玉洁, 陶福禄
收稿日期:
2011-10-24
修回日期:
2011-12-20
出版日期:
2012-03-20
发布日期:
2012-03-20
通讯作者:
陶福禄(1970-), 男, 河南人, 博士, 研究员, 中国地理学会会员(S110008518M), 研究方向为全球变化生态学, 全球变化的影响和适应。E-mail: taofl@igsnrr.ac.cn
基金资助:
LIU Yujie, TAO Fulu
Received:
2011-10-24
Revised:
2011-12-20
Online:
2012-03-20
Published:
2012-03-20
Supported by:
摘要: 气候变化对农业生产的影响和适应一直是学界关注的重点。但是,由于气候模式输出、排放情景、尺度转换、模型参数化等研究过程中存在的不确定性,往往导致研究结果也存在较大的不确定性。为减少研究结果的不确定性,本研究综合了IPCC 四个排放情景(A1FI、A2、B1、B2) 以及5 个全球气候模式(HadCM3, PCM, CGCM2, CSIRO2, ECHAM4) 的输出结果,基于英国CRU 气候中心的20 个未来情景数据库,生成全球平均温度升高1℃(GMT+1D)、2℃ (GMT+2D)、3℃ (GMT+3D) 下研究站点的气候日值中值情景数据,利用过程模型CERES-Wheat 和概率预测方法研究CO2肥效作用和GMT+1D、GMT+2D、GMT+3D对我国小麦主产区小麦生物量的影响。研究结果表明:CO2肥效作用可以补偿由于温度升高而造成的小麦生物量减产且补偿作用随着温度的升高而增加。当有CO2肥效作用时,灌溉小麦和雨养小麦生物量均增加,且随着温度的升高生物量的增长程度增大,相同情景下,雨养小麦生物量的增高概率大于灌溉小麦。当不考虑CO2肥效作用时,灌溉小麦和雨养小麦生物量均降低,且灌溉小麦生物量减产的概率大于雨养小麦减产概率。
刘玉洁, 陶福禄. 气候变化对小麦生物量影响的概率预测和不确定性分析[J]. 地理学报, 2012, 67(3): 337-345.
LIU Yujie, TAO Fulu. Probabilistic Assessment and Uncertainties Analysis of Climate Change Impacts on Wheat Biomass[J]. Acta Geographica Sinica, 2012, 67(3): 337-345.
[1] Gbetibouo G, Hassan R. Economic impact of climate change on major South African field crops: A Ricardian approach. Global Plant Change, 2005, 47: 143-152. [2] Tao F, Yokozawa M, Hayashi Y et al. Future climate change, the agricultural water cycle, and agricultural production in China. Agricultural Ecosystem & Environment, 2003, 95: 203-215. [3] Tao F, Yokozawa M, Xu Y et al. Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agricultural and Forest Meteorology, 2006, 138: 82-92. [4] Tao F L, Yokozawa M, Liu J Y et al. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research, 2008, 38: 83-94. [5] Challinor A J, Wheeler T R. Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agricultural and Forest Meteorology, 2008, 148: 343-356. [6] Challinor A J, Simelton E S, Fraser E D G et al. Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environment Research Letters, 2010, 5: 034012 (8pp). [7] Laux P, Jackel G, Tingem R M et al. Impact of climate change on agricultural productivity under rainfed conditions in Cameroon: A method to improve attainable crop yields by planting date adaptations. Agricultural and Forest Meteorology, 2010, 150: 1258-1271. [8] Mo Xingguo, Liu Suxia, Lin Zhonghui et al. Patterns of evapotranspiration and GPP and their responses to climate variations over the North China Plain. Acta Geographica Sinica, 2011, 66(5): 589-598. [莫兴国, 刘苏峡, 林忠辉等. 华北平原蒸散和GPP格局及其对气候波动的响应. 地理学报, 2011, 66(5): 589-598.] [9] Tao F L, Zhang Z. Impacts of climate change as a function of global mean temperature: Maize productivity and water use in China. Climatic. Change, 2011 105: 409-432. [10] Zhang Jianping, Zhao Yanxia, Wang Chunyi et al. Effects of climate change on wheat growth and yield in North China. Chinese Journal of Applied Ecology, 2006, 17(7): 1179-1184. [张建平, 赵艳霞, 王春乙等. 气候变化对我国华北地区冬小麦发育和产量的影响. 应用生态学报, 2006, 17(7): 1179-1184.] [11] Tian Zhan, Liu Jiyuan, Cao Mingkui. Simulation of the impact of climate change on Chinese wheat production in Huang-Huai-Hai Plain. Journal of Natural Resources, 2006, 21(4): 598-607. [田展, 刘纪远, 曹明奎. 气候变化对中国黄淮海农业区小麦生产影响模拟研究. 自然资源学报, 2006, 21(4): 598-607.] [12] Liu Y J, Lin E D. Impact of climate warming in the past 20 years on agriculture in different regions of China. Advances in Climate Change Research, 2008, 4: 51-55. [13] Mo X G, Liu S X, Chen D et al. Scale effects on actual evapotranspiration and gross primary production over a large basin. Hydrological Sciences Journal, 2009, 54: 160-173. [14] Liu Y J, Yuan G F. Impacts of climate change on winter wheat growing process and production under B2 climate scenario in Panzhuang irrigation district. Journal of Geographical Sciences, 2010, 20(6): 861-875. [15] Lobell D B, Burke M B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation. Environment Research Letters, 2008, 3: 034007. [16] Tao F, Hayashi Y, Zhang Z et al. Global warming, rice production and water use in China: Developing a probabilistic assessment. Agricultural and Forest Meteorology, 2008, 148: 94-110. [17] Lobell D B, Schlenker W, Roberts J C. Climate trends and global crop production since 1980. Science, 2011, 333: 616-620. [18] Jones J W, Hoogenboom G, Porter C H. The DSSAT cropping system model. European Journal of Agronomy. 2003, 18: 235-265. [19] Rinaldi M. Water availability at sowing and nitrogen management of durum wheat: A seasonal analysis with CERES-Wheat model. Field Crops Research, 2004, 89: 27-37. [20] Popova Z, Kercheva M. CERES model application for increasing preparedness to climate variability in agricultural planning-risk analyses. Physics and Chemistry of the Earth, 2005, 30: 117-124. [21] Arora V K, Singh H, Singh B. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the DSSAT-Wheat model. Agricultural Water Management, 2007, 94(1-3): 22-30. [22] Benli B, Pala M, Stockle C et al. Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using crop system simulation model. Agricultural Water Management, 2007, 93(1/2): 45-53. [23] Cao Yonghua. U.S. CERES crop simulation model and its application. World Agriculture, 1991, (9): 52-55. [曹永华. 美国CERES作物模拟模型及其应用. 世界农业, 1991, (9): 52-55.] [24] Cao Yonghua. A summary of research on the agricultural decision support system. China Agricultural Meteorology, 1997, 18(4): 46-50. [曹永华. 农业决策支持系统研究综述. 中国农业气象, 1997, 18(4): 46-50.] [25] Ju Hui, Xiong Wei, Xu Yinlong et al. Impacts of climate change on wheat yield in China. Acta Agronomica Sinica. 2005, 31(10): 1340-1343. [居辉, 熊伟, 许吟隆等. 气候变化对我国小麦产量的影响. 生态学报, 2005, 31(10): 1340-1343.] [26] Xiong Wei, Xu Yinlong, Lin Erda et al. Simulation experiment of RCM and crop model combination and its uncertainty assessment. Chinese Journal of Ecology, 2005, 24(7): 741-746. [熊伟, 许吟隆, 林而达等. 区域气候模式与作物模型联接的影响评估模拟实验及不确定性分析. 生态学杂志, 2005, 24(7): 741-746.] [27] Xiong Wei, Ju Hui, Xu Yinlong et al. Regional simulation of wheat yield in China under the climatic change condition. Chinese Journal of Eco-agriculture, 2006, 14(2): 164-167. [熊伟, 居辉, 许吟隆等. 气候变化下我国小麦产量变化区域模拟研究. 中国生态农业学报, 2006, 14(2): 164-167.] [28] Xiong Wei, Lin Erda, Yang Jie et al. Comparion of two calibration approaches for regional simulation of crop model. Acta Agronomica Sinica, 2008, 28(5): 2140-2147. [熊伟, 林而达, 杨婕等. 作物模型区域应用两种参数校准方法的比较. 生态学报, 2008, 28(5): 2140-2147.] [29] Xiong Wei, Yang Jie, Lin Erda et al. The projection of maize yieldin China under climate change scenarios. Advances in Earth Sciences, 2008, 23(10): 1092-1101. [熊伟, 杨婕, 林而达等. 未来不同气候变化情景下我国玉米产量的初步预测. 地球科学进展, 2008, 23(10): 1092-1101.] [30] Yang Y, Watanabe M, Zhang X et al. Estimation of groundwater use by crop production simulated by DSSAT-wheat and DSSAT-maize models in the piedmont region of the North China Plain. Hydrological Process, 2006, 20: 2787-2802. [31] Rezzoug W, Gabrielle B, Suleiman A et al. Application and evaluation of the DSSAT-wheat in the Tiaret region of Algeria. African Journal of Agricultural Research, 2008, 4: 284-296. [32] Liu Yujie. Crop-water welationship: Experimental and modelling study in Panzhuang Irrigation District along the lower Yellow River, China [D]. Beijing: Graduate University of Chinese Academy of Sciences, 2010. [刘玉洁. 黄河下游潘庄灌区作物水分关系实验与模拟研究[D]. 北京: 中国科学院研究生院, 2010.] [33] Liu Y J, Tao F L. Probabilistic change assessment of wheat productivity and water use in China for global mean temperature changes of 1, 2, and 3℃. Agricultural Systems, 2011. (under review) [34] Semenov M A, Brooks R J, Barrow E M et al. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Research, 1998, 10: 95-107. [35] Mitchell T D, Carter T R, Jones P D et al. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901-2000) and 16 scenarios (2001-2100). Working Paper 55, Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, 2004. [36] Amthor J S. Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Research, 2001, 73: 1-34. |
[1] | 汪晓帆, 戴尔阜, 郑度, 吴卓. 南方红壤丘陵区采伐变量对森林面积和生物量影响模拟[J]. 地理学报, 2021, 76(1): 223-234. |
[2] | 吴卓, 戴尔阜, 葛全胜, 奚为民, 汪晓帆. 土地利用和气候变化对森林地上生物量的影响模拟——以江西省泰和县为例[J]. 地理学报, 2017, 72(9): 1539-1554. |
[3] | 安成邦, 王伟, 段阜涛, 黄伟, 陈发虎. 亚洲中部干旱区丝绸之路沿线环境演化与东西方文化交流[J]. 地理学报, 2017, 72(5): 875-891. |
[4] | 焦翠翠, 于贵瑞, 何念鹏, 马安娜, 葛剑平, 胡中民. 欧亚大陆草原地上生物量的空间格局及其与环境因子的关系[J]. 地理学报, 2016, 71(5): 781-796. |
[5] | 廖亮林, 周蕾, 王绍强, 汪小钦. 2005-2013年中国新增造林植被生物量碳库固碳潜力分析[J]. 地理学报, 2016, 71(11): 1939-1947. |
[6] | 钱锦霞, 李娜, 韩普. 冬季气候变暖对山西省冬小麦可种植区的影响[J]. 地理学报, 2014, 69(5): 672-680. |
[7] | 王学, 李秀彬, 辛良杰. 河北平原冬小麦播种面积收缩及由此节省的水资源量估算[J]. 地理学报, 2013, 68(5): 694-707. |
[8] | 张朝, 王品, 陈一, 张帅, 陶福禄, 刘晓菲. 1990年以来中国小麦农业气象灾害时空变化特征[J]. 地理学报, 2013, 68(11): 1453-1460. |
[9] | 邵全琴,杨海军,刘纪远,黄麟,陈卓奇. 基于树木年轮信息的江西千烟洲人工林碳蓄积分析[J]. 地理学报, 2009, 64(1): 69-83. |
[10] | 李英年,王勤学,古松,伏玉玲,杜明远,赵亮,赵新全,于贵瑞. 高寒植被类型及其植物生产力的监测[J]. 地理学报, 2004, 59(1): 40-48. |
[11] | 牛志春,倪绍祥. 青海湖环湖地区草地植被生物量遥感监测模型[J]. 地理学报, 2003, 58(5): 695-702. |
[12] | 李仁东, 刘纪远. 应用LandsatETM数据估算鄱阳湖湿生植被生物量[J]. 地理学报, 2001, 56(5): 532-540. |
[13] | 张喜英. 冬小麦、夏玉米叶水势、蒸腾和液态水流阻力的田间试验研究[J]. 地理学报, 1997, 52(6): 543-550. |
[14] | 李俊, 于沪宁, 刘苏峡. 冬小麦水分利用效率及其环境影响因素分析[J]. 地理学报, 1997, 52(6): 551-560. |
[15] | 吴凯, 陈建耀, 谢贤群. 冬小麦水分耗散特性与农业节水[J]. 地理学报, 1997, 52(5): 455-460. |