地理学报 ›› 2012, Vol. 67 ›› Issue (1): 27-35.doi: 10.11821/xb201201003

• 生态与环境 • 上一篇    下一篇

盐城海岸带土壤重金属潜在生态风险控制优先格局

方淑波1,2, 贾晓波3, 安树青4, 郑正1   

  1. 1. 复旦大学环境科学与工程系, 上海 200433;
    2. 上海海洋大学水产与生命学院, 上海 201306;
    3. 中国环境科学研究院流域水生态保护技术研究室, 北京 100012;
    4. 南京大学生命科学学院湿地生态研究所, 南京 210093
  • 收稿日期:2011-08-11 修回日期:2011-10-08 出版日期:2012-01-20 发布日期:2012-02-28
  • 通讯作者: 安树青,男,河北张北人,教授,博士生导师,从事湿地生态学及水域生态修复研究。Email:anshq@nju.edu.cn
  • 基金资助:
    国家自然科学基金项目(41101172)

The Priority Pattern for Managing the Potential Ecological Risks Associated with Heavy Metals of the Top Soil on Yancheng Coast

FANG Shubo1,2, JIA Xiaobo3, AN Shuqing4, ZHENG Zheng1   

  1. 1. Environmental Science and Engineering Department, Fudan University, Shanghai 200433, China;
    2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
    3. Laboratory of Riverine Ecological Conservation and Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
    4. The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
  • Received:2011-08-11 Revised:2011-10-08 Online:2012-01-20 Published:2012-02-28
  • Supported by:
    National Natural Science Foundation of China, No.41101172

摘要: 采用GS+软件,分析了盐城海岸带106 个土壤采样点的表层土壤样品中Cr、Cu、Ni、Zn、Cd共5 种重金属元素的地统计特征,计算了重金属元素的Hakanson 潜在生态风险指数并采用ArcGIS 软件对其进行空间插值,结合NDVI 及距离海岸带主要干扰源的欧氏距离分析,以及土地利用分析,研究了盐城海岸带区域的生态热点地区,分析了海岸带具有不同生态风险水平的生态热点区域,并以此对盐城海岸带的重金属生态风险控制提出了空间策略。结果表明:Cr、Cu、Cd的空间相关性强,Ni 的空间相关性为中,Zn不具有空间相关性;半方差函数模型模拟分析表明,指数模型可以很好的模拟Cr、Ni 的空间分布,而Cu、Cd的较优模拟模型是球状模型;插值的结果表明,Hakanson 指数的空间分布异质性较强,南部靠近大丰麋鹿自然保护区和梁垛河闸、中部大丰港和四卯酉闸之间,以及北部射阳港以北几个区域的HRI值较低,而射阳港周边、射阳盐场周边的HRI 值较高。通过计算,给出了一个优先的具有较高生态价值并具有中度和低度重金属生态风险的生态保护格局。

关键词: 优先管理区域, 重金属, 半方差函数模型, Hakanson 指数, 生态热点地区

Abstract: The spatial geostatistical characteristics of the 5 heavy metals (Cr, Cu, Ni, Zn and Cd) of the top 106 soil samples on Yancheng coast, were studied with the aid of GS+ software. With ARCGIS 9.2, the Hakanson risks index (HRI), which was a synthetic reflection of the potential ecological risks of heavy metals, was interpolated. A computational approach, including NDVI, determining Euclidean Distance to the main anthropogenic impact sources, and land use reclassification, was proposed to detect the ecological hotspots, with clarification of different levels of potential ecological risks through integrating the Hakanson index computing. The conclusions can be drawn as follows. Metals (Cr, Cu and Cd) had strong spatial autocorrelations, while Ni had modest spatial autocorrelations, and the spatial autocorrelation of Zn could not be modeled. Through the semivariogram functions analysis, the exponential model could best model the spatial autocorrelations of Cr and Ni, while spherical model could best model Cu and Cd. There was a high heterogeneity of HRI, and areas including the Dafeng Natural Reserve areas, near the Liangduo River Gate, the areas between Dafeng Habour and Simaoyou Gate, and areas north to the Sheyang Habour, had a relatively low HRI, while areas including areas neighboring Sheyang Habour and Sheyang Salt Field had a high HRI. The priority ecological hotspots with medium and low heavy metal ecological risks were finally proposed.

Key words: heavy metals, semivariogram model, Hakanson index, ecological hotspots, priority management areas