地理学报 ›› 2011, Vol. 66 ›› Issue (6): 750-760.doi: 10.11821/xb201106004
董冠鹏1,2,3, 张文忠1,2, 武文杰4, 郭腾云1,2
收稿日期:
2010-10-11
修回日期:
2011-02-15
出版日期:
2011-06-20
发布日期:
2011-06-20
通讯作者:
张文忠(1966-), 男, 内蒙古呼和浩特人, 研究员, 博士生导师, 中国地理学会会员(S110005239M), 主要从事城市和区域发展研究。E-mail: zhangwz@igsnrr.ac.cn
作者简介:
董冠鹏(1985-), 男, 河南许昌人, 硕士研究生, 主要从事区域与城市发展研究。E-mail: donggp.08s@igsnrr.ac.cn
基金资助:
国家自然科学基金项目(40971077)
DONG Guanpeng1,2,3, ZHANGWenzhong1,2, WUWenjie4, GUO Tengyun1,2
Received:
2010-10-11
Revised:
2011-02-15
Online:
2011-06-20
Published:
2011-06-20
Supported by:
National Nature Science Foundation of China, No.40971077
摘要: 土地制度转型和空间重构背景下,价格信号在土地区位配置及空间结构塑造方面发挥出有效性。基于北京市2004-2009 年居住用地出让地块微观数据,利用空间扩展模型、地理加权回归模型和特征价格模型对居住用地价格影响因素及其空间异质性进行了有效检验和预测。模型结果表明:① 居住用地价格影响因素存在着显著的空间异质性,重点小学、轨道交通和公园等设施便利性因素在不同区域对地价的作用强度存在明显差异。② 相比于特征价格模型和空间扩展模型,GWR模型能够有效刻画土地市场空间异质性的离散性、突变性和跳跃性,因而其对居住用地影响因素的空间异质性刻画和居住用地价格的预测最为准确。③ 居住用地价格影响因素的空间异质性表明居住用地子市场存在的可能性,利用GWR模型对地价影响因素的估计可以为土地子市场的划分提供方法借鉴。
董冠鹏, 张文忠, 武文杰, 郭腾云. 北京城市住宅土地市场空间异质性模拟与预测[J]. 地理学报, 2011, 66(6): 750-760.
DONG Guanpeng, ZHANGWenzhong, WUWenjie, GUO Tengyun. Spatial Heterogeneity in Determinants of Residential Land Price: Simulation and Prediction[J]. Acta Geographica Sinica, 2011, 66(6): 750-760.
[1] Rosen S. Hedonic prices and implicit markets: product differentiation in pure competition. Journal of Polital Economy,1974, 82(1): 34-55.[2] Raymond Y C T. Estimating neighborhood effects in house prices: Towards a new hedonic model approach. Urban Studies,2002, 39(7): 1165-1180.[3] Dubin R, Pace R K, Thibodeau T G. Spatial autoregression techniques for real estate data. Journal of Real Estate Literature,1999, 7(1): 79-95.[4] Steven C, Bourassa S C. Spatial dependence, housing submarkets, and house price predition. Journal of Real Estate Financeand Economics, 2007, 35: 143-160.[5] Brasington D M, Hite D. Demand for environmental quality: A spatial hedonic analysis. Regional Science and UrbanEconomics, 2005, 35: 57-82.[6] Bitter C, Mulligan G F, Dall'erba S. Incorporating spatial variation in housing attribute prices: A comparison ofgeographically weighted regression and the spatial expansion method. Journal of Geographical Systems, 2007, 9: 7-27.[7] Paez A, Uchida T, Miyamoto K. Spatial association and heterogeneity issues in land price models. Urban Studies, 2001, 38(9): 1493-1508.[8] Dubin R, Sung C. Spatial variation in the price of housing: Rent gradients in non-monocentric cities. Urban Studies, 1987,24: 193-204.[9] Goodman A. Housing market segmentation. Journal of Housing Economics, 1998, 7: 121-143.[10] Michaels R, Smith V. Market segmentation and valuing amenities with hedonic models: The case of hazardous waste sites.Journal of Urban Economics, 1990, 28: 223-242.[11] Schnare A, Struyk R. Segmentation in urban housing markets. Journal of Urban Economics, 1976, 4: 146-166.[12] Quigley J. Consumer choice of dwelling, neighborhood and public services. Regional Science and Urban economics,1985, 15: 41-63.[13] Anselin L, Lozano-Gracia N. Spatial hedonic models. ASUWorking Paper 2008-02.[14] Goodman A, Thibodeau T. Housing market segmentation and hedonic prediction accuracy. Journal of Urban Economics,2003, 12: 181-201.[15] Can A. Specification and estimation of hedonic house price models. Regional Science and Urban Economics, 1992, 22:453-474.[16] Theriault M, Des Rosiers F, Villeneuve P. Modelling interactions of location with specific value of housing attributes.Property Manage, 2003, 21: 25-48.[17] Fik T, Ling D, Mulligan G. Modeling spatial variation in housing prices: A variable interaction approach. Real EstateEconomics, 2003, 31: 623-646.[18] Paez A. Local analysis of spatial relationships: A comparison of GWR and the expansion method. Lecture NotesComputer Science, 2005, 3482: 162-172.[19] Xiaolu G, Yasushi A. Influence of spatial features on land and housing prices. Tsinghua Science and Technology, 2005, 10(3): 344-353.[20] Hongbo D, Mulley C. Transport accessibility and land value: A case study of Tyne and Wear. RICS Research Paper Series,2007, 7, 3.[21] Wu Wenjie, Zhang Wenzhong, Liu Zhilin et al. Tempo-spatial analysis of the residential land's spatial pattern in Beijing.Geographical Research, 2010, 29(4): 683-692. [武文杰, 张文忠, 刘志林等. 北京市居住用地出让的时空格局演变. 地理研究, 2010, 29(4): 683-692.][22] Cheshire P, Shepherd S. Estimating the demand for housing, land and neighborhood characteristics. Oxford Bulletin ofEconomics and Statistics, 1998, 60(3): 357-382.[23] Zheng S, Kahn M E. Land and residential property markets in a booming economy: New evidence from Beijing. Journalof Urban Economics, 2007, 63: 743-757.[24] Wu Wenjie, Liu Zhilin, Zhang Wenzhong. Determinants of residential land price: Structure equation model analysis usingland-leasing parcel data in Beijing. Acta Geographica Sinica, 2010, 65(6): 676-684. [武文杰, 刘志林, 张文忠. 基于结构方程模型的北京居住用地价格影响因素评价. 地理学报, 2010, 65(6): 676-684.][25] Wang Songtao, Zheng Siqi, Feng Jie. Spatial accessibility of housing to public services and its impact on housing price: Acase study of Beijing's inner city. Progress in Geography, 2007, 26(6): 78-87. [王松涛, 郑思齐, 冯杰. 公共服务设施可达性及其对新建住房价格的影响: 以北京中心城为例. 地理科学进展, 2007, 26(6): 78-87.][26] Cassetti E. Generating models by the expansion method: Applications to geographical research. Geographical Analysis,1972, 4: 81-92.[27] Cassetti E, Jones J P. Spatial aspects of the productivity slowdown: An analysis of US manufacturing data. Annals of theAssociation of American Geographers, 1987, 77(1): 76-88.[28] Brunsdon C, Fotheringham A S, Charlton M. Some notes on parametric significance tests for geographical weightedregression. Journal of Regional Science, 1999, 39(3): 497-524.[29] LeSage J P. Spatial econometrics. Toledo: Department of Economics, University of Tolendo, 1999.[30] Bernard F. Estimates of time to economic convergence: An analysis of regions of the European Union. InternationalRegional Science Review, 1999, 22: 5-35.[31] Gu Yizheng, Zheng Siqi. The impacts of rail transit on property values and land development intensity: The case of No.13Line in Beijing. Acta Geographica Sinica, 2010, 65(2): 213-223. [谷一桢, 郑思齐. 轨道交通对住宅价格和土地开发强度的影响: 以北京市13 号线为例. 地理学报, 2010, 65(2): 213-223.][32] Li Qiang, Li Xiaolin. Analysis on the residents' working-trip characteristics in the inner-suburb of Beijing. Urban Affairs,2007, (7): 55-59. [李强, 李晓林. 北京市近郊大型居住区居民上班出行特征分析. 城市问题, 2007, (7): 55-59.] |
[1] | 彭诗尧, 陈绍宽, 许奇, 牛家祺. 基于POI的土地利用与轨道交通客流的空间特征[J]. 地理学报, 2021, 76(2): 459-470. |
[2] | 古恒宇, 孟鑫, 沈体雁, 崔娜娜. 中国城市流动人口居留意愿影响因素的空间分异特征[J]. 地理学报, 2020, 75(2): 240-254. |
[3] | 党琴, 胡伟, 葛岳静, 丁时洪, 冶莉, 王淑芳. 中国与南美洲国家地缘经济联系强度及其影响因素[J]. 地理学报, 2020, 75(10): 2061-2075. |
[4] | 涂建军,唐思琪,张骞,吴越,罗运超. 山地城市格局对餐饮业区位选择影响的空间异质性[J]. 地理学报, 2019, 74(6): 1163-1177. |
[5] | 杨晴青,刘倩,尹莎,张戬,杨新军,高岩辉. 秦巴山区乡村交通环境脆弱性及影响因素——以陕西省洛南县为例[J]. 地理学报, 2019, 74(6): 1236-1251. |
[6] | 高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543. |
[7] | 王海军, 张彬, 刘耀林, 刘艳芳, 徐姗, 邓羽, 赵雲泰, 陈宇琛, 洪松. 基于重心-GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析[J]. 地理学报, 2018, 73(6): 1076-1092. |
[8] | 曹小曙, 徐建斌. 中国省际边界区县域经济格局及影响因素的空间异质性[J]. 地理学报, 2018, 73(6): 1065-1075. |
[9] | 杨斯棋,邢潇月,董卫华,李帅朋,詹智成,王全意,杨鹏,张奕. 北京市甲型H1N1流感对气象因子的时空响应[J]. 地理学报, 2018, 73(3): 460-473. |
[10] | 文琦,施琳娜,马彩虹,王永生. 黄土高原村域多维贫困空间异质性研究——以宁夏彭阳县为例[J]. 地理学报, 2018, 73(10): 1850-1864. |
[11] | 崔娜娜, 冯长春, 宋煜. 北京市居住用地出让价格的空间格局及影响因素[J]. 地理学报, 2017, 72(6): 1049-1062. |
[12] | 宋伟轩, 毛宁, 陈培阳, 袁亚琦, 汪毅. 基于住宅价格视角的居住分异耦合机制与时空特征——以南京为例[J]. 地理学报, 2017, 72(4): 589-602. |
[13] | 江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报, 2017, 72(3): 533-544. |
[14] | 王少剑, 王洋, 赵亚博. 1990年来广东区域发展的空间溢出效应及驱动因素[J]. 地理学报, 2015, 70(6): 965-979. |
[15] | 彭建, 党威雄, 刘焱序, 宗敏丽, 胡晓旭. 景观生态风险评价研究进展与展望[J]. 地理学报, 2015, 70(4): 664-677. |