地理学报 ›› 2010, Vol. 65 ›› Issue (12): 1559-1568.doi: 10.11821/xb201012011

• 碳排放与低碳经济 • 上一篇    下一篇

最优增长路径下的中国碳排放估计

王铮1,2, 朱永彬2, 刘昌新1,3, 马晓哲2,4   

  1. 1. 中国科学院科技政策与管理科学研究所, 北京100190;
    2. 华东师范大学地理信息科学教育部重点实验室, 上海200062;
    3. 中国科学院研究生院, 北京100049;
    4. 河南省科学院地理研究所,郑州450052
  • 收稿日期:2010-05-21 修回日期:2010-11-10 出版日期:2010-12-20 发布日期:2010-12-20
  • 作者简介:王铮(1954-), 男, 云南陆良人, 博士, 研究员。主要从事理论地理学、计算地理学研究工作, 中国地理学会会员(S110003918M)。E-mail: wangzheng@casipm.ac.cn
  • 基金资助:

    国家自然科学基金项目(40771076); 中国科学院知识创新工程重要方向项目(KZCX2-YW-325-7)

Integrated Projection of Carbon Emission for China under the Optimal Economic Growth Path

WANG Zheng1,2, ZHU Yongbin2, LIU Changxin1,3, MAXiaozhe2,4   

  1. 1. Institute of Policy and Management, CAS, Beijing 100190, China;
    2. Key Laboratory of Geographic Information System, Ministry of Education, East China Normal University, Shanghai 200062, China;
    3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Institute of Geographical Sciences of Henan Academy of Sciences, Zhengzhou 450052, China
  • Received:2010-05-21 Revised:2010-11-10 Online:2010-12-20 Published:2010-12-20
  • Supported by:

    Key directive item of Knowledge Innovation Project of the Chinese Academy of Sciences, No. KZCX2-YW-325-7

摘要: 从能源消费、水泥生产和森林碳汇3 个方面对中国未来的碳排放进行了较为全面的估计。其中,能源消费碳排放是在能源—经济框架下利用经济动力学模型对最优经济增长路径下的能源需求进行预测得到的,同时考虑了能源结构的演化及不同能源品种在碳排放系数上存在的差异;水泥生产碳排放则是在对水泥产量预测的基础上进行的,认为水泥产量与城市化进程存在一定的联系,而城市化进程遵循“S曲线”发展规律;森林碳汇是通过引入CO2FIX模型,分别对原有森林与新增可造林的固碳能力进行估算,最终合成了中国未来的净碳排放曲线。结果发现,能源消费碳排放在2031 年达到高峰,为2637 MtC,对应的人均GDP低于OECD国家的实证经验;人均排放高峰出现在2030 年,为1.73 tC/人,远低于美国欧盟和日本2006 年水平;水泥生产碳排放增长放缓,2050 年控制在254 MtC左右,占工业总排放的12%;森林碳汇至2050 年可累计吸收6806.2 MtC,年吸收量逐渐下降;净排放也于2033 年达到峰值,为2748 MtC。

关键词: 能源消费, 水泥生产, 森林碳汇, 净排放, 中国

Abstract: This paper performed a comprehensive projection of carbon emission through 2050 from the aspects of energy consumption, cement production process and forest carbon sink. Emission from energy consumption is estimated under the energy-economy framework by introducing the economic dynamics model and forecasting the energy demand on the optimal growth path, meanwhile the evolution of energy structure and the variation of carbon contents among energy types are also considered. Emission from cement production is projected on the basis of the forecast of cement output, which is deemed to be relative to urbanization process, while the latter follows the traditional S-curve development law. The estimation of forest carbon sink capability, involving the existing and newly afforested one, is conducted by employing the CO2FIX model. Eventually, all the three carbon sources or sink are composed to obtain the net carbon emission. Our results indicate that carbon emission from energy consumption peaks in 2031, with an emission of 2637 MtC (Million tons of Carbon equivalent) and the GDP per capita in that year is lower than the empirical experience of OECD countries; while the per capita energy-induced emission peaks in 2030, with a volume of 1.73 tC, which is far behind the US level of 2006 and still lower than the EU and Japan level of 2006. Besides, emission from cement production demonstrates a slow-down growth trend, and its emission is confined within 254 MtC, which is equivalently 12% of gross emission (here it refers to those emitted from energy consumption and cement production). Accumulated forest carbon sink is able to absorb 6806.2 MtC CO2 through 2050, but the annual absorption is dropping gradually. It is estimated that the net emission of CO2 will peak in 2033, which is 2748 MtC.

Key words: energy consumption, cement production, forest carbon sink, net CO2 emission