地理学报

• 论文 • 上一篇    下一篇

适度旅游圈时空规模的可计算模型

李山1,  王铮1, 2   

  1. 1. 华东师范大学地理信息科学教育部重点实验室,上海 200062;
    2. 中国科学院科技政策与管理科学研究所,北京 100080
  • 修回日期:2009-06-18 出版日期:2009-10-16 发布日期:2009-10-29
  • 通讯作者: 王铮 (1954-), 男, 云南人, 研究员, 博士生导师, 中国地理学会会员, 主要研究方向为区域科学与地理计算。
  • 作者简介:李山 (1974-), 男, 四川人, 副教授, 博士, 中国地理学会会员 (S110005086m), 主要研究方向为旅游GIScience与旅游规划。E-mail: sli@geo.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金重点项目 (40131010)

Computable Models on the Temporal and Spatial Scale of an Optimum Tourism Destination Circle

LI Shan1,  WANG Zheng1,2   

  1. 1. Key Laboratory of Geographic Information Science (East China Normal University), Ministry of Education, Shanghai 200062, China;
    2. Institute of Policy and Management, CAS, Beijing 100080, China
  • Revised:2009-06-18 Online:2009-10-16 Published:2009-10-29
  • Supported by:

    Key Project of National Nature Science Foundation of China, No.40131010

摘要:

立足旅游圈的“组合产品”属性,引入游时和旅径分别从时间尺度和空间尺度来衡量旅游圈规模,从而发展适度旅游圈时空规模分析的可计算模型,并对长江三角洲旅游圈进行了案例研究。结果表明:① 适度旅游圈规模与游客出行尺度显著正相关,以游览时间 (T1,天) 表征的适度旅游圈时间规模随游客出行距离 (D,km) 增加而呈现出T1 = 0.0715D0.5666 的幂函数形式增长;以旅径 (?渍,km) 测度的适度旅游圈空间规模随游客出行距离增加而呈现为“Y”型模式的分段函数关系,其中当D ≤322 时,?渍 = 0,而当D > 322 时,?渍 = 253.6 lnD - 1464.6。② 在中国大陆,仅考虑市场因素,距离目的地300 km以内的近程市场需求是旅游地发展的基础性力量;而300 km以外的市场需求则驱动了旅游圈的形成和扩张,且其规模的增长具有收敛性,就适度旅径而言不宜超过600 km。③ 旅游圈以连续型游时和离散型旅径之间的“时空联动”实现从一个规模状态向另一个规模状态的“跃迁”,形成嵌套结构;就长江三角洲旅游圈而言,沪苏杭圈和沪宁杭圈已经发展成熟,并分别试图向沪苏黄圈和沪宁黄圈跃迁,而新的沪杭甬圈也正在形成。

关键词: 旅游圈, 区域旅游合作, 目的地区域, 游时, 旅径, 长江三角洲

Abstract:

Tourism destination circle(TDC) is a kind of destination region, which is defined as a spatial collaborating organization, which inhabits a certain geographic space, and has one or several tourism distributing centers as well as many tourism areas (or tourism attraction complexes), It can supply enough products and services for an effective visit. Here, the scale of an optimum TDC is of vital importance: If the scale is beyond the actual demand of visitors, then the TDC is inefficient and some tourism resources (or products) are wasted; if the scale is less than the actual demand of visitors, then the visitors cannot be fulfilled and the TDC cannot develop well. In this paper, tour-time (T, including traveling time T0 and visiting time T1, unit: days) and tour-diameter (?渍, unit: kilometers) are introduced to measure the scale of TDC, in which tour-time is a scale from temporal dimension while tour-diameter is a scale from spatial dimension. Two computable models on the scale of an optimum TDC are proposed based on statistical analysis of the data gathered from more than 600 travel itineraries, which are applied in the Yangtze River Delta as an example. The research shows that: 1) There is a high significantly positive correlation between the scale of an optimum TDC and the traveling distance (D, unit: kilometers), in which T1 = 0.0715D0.5655 and T0 = 0.1908D0.4601, while ?渍 = 0 (if  D ≤322) or ?渍 = 253.6lnD - 1464.6 (if D > 322). 2) When we consider only market factors, the demand of tourism market within 300 kilometers from a destination region is the basic force for the development of tourism areas, and then the formation and expansion of TDCs are induced by the demand of tourism market beyond 300 kilometers from the destination regions. The increase of TDC is convergent, which should be less than 600 kilometers. 3) The scale of TDC will "transfer" from one state to another based on "time-space linkage" between continuous tour-time and discrete tour-diameter, which leads to the formation of a nested structure of TDC.

Key words: TDC, regional tourism cooperation, destination region, tour-time, tour-diameter, Yangtze River Delta