[1] Pan Xiaoling, Wang Xuecai, Lei Jiaqiang. Thoughts about the evolution and control of eco-environment in arid western china. Advance in Earth Sciences, 2001, 16(1): 24-27.
[潘晓玲, 王学才, 雷加强. 关于中国干旱区生态环境演变与调控研究的思考. 地球科学进展, 2001, 16(1): 24-27.]
[2] Pan Xiaoling, Chao Jiping. The effect of climate on development of ecosystem in oasis. Advance in Atmosphere Science, 2001, 18 (1): 42-53.
[3] Larcher W. Plant Ecology Science. Beijing: China Agricultural University Press, 1997.
[Larcher W. 植物生态生理学. 北京: 中国农业大学出版社, 1997.]
[4] Pan Xiaoling, Zeng Xubin, Zhang Jie et al. Interaction of evolution of ecological landscape pattern and climate change in Xinjiang. Journal of Xinjiang University (Natural Science Edition), 2004, 21(1): 1-7.
[潘晓玲, 曾旭斌, 张杰 等. 新疆生态景观格局演变及其与气候的相互作用. 新疆大学学报(自然科学版), 2004 , 21(1): 1-7.]
[5] Asner G P, Heidebrecht K B. Desertification alters regional ecosystem - climate interactions. Global Change Biology, 2005, 11(1): 182 -194.
[6] Huenneke L F, Anderson J P, Remmenga M et al. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Global Change Biology, 2002, 8: 247-264.
[7] Schlesinger W H, Reynolds J F, Cunningham G L et al. Biological feedbacks in global desertification. Science, 1990, 247: 1043-1048.
[8] Field C B, Randerson J T, Malmstrm C M. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 1995, 51: 74-88.
[9] Liu Jiyuan. Macroscopical remote sensing investigation and dynamics study of national resources and environment. Journal of Remote Sensing, 1997, 1(3).
[刘纪远. 国家资源环境遥感宏观调查与动态研究. 遥感学报, 1997, 1(3).]
[10] Gao Zhiqiang, Liu Jiyuan, Cao Mingkui et al. Impact of land use and climate change on regional net primary productivity. Acta Geographica Sinica, 2004, 59(4): 581-591.
[高志强, 刘纪远, 曹明奎 等. 土地利用和气候变化对区域净初级生产力影响. 地理学报, 2004, 59(4): 581-591.]
[11] Prince S D. Satellite remote sensing of primary production: comparison of results from Sahelian grasslands 1981-1988. International Journal of Remote Sensing, 1991, 12: 1301-1311.
[12] Potter C S, Randerson J T, Field C B et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biochemical Cycle, 1993, 7: 811-841.
[13] Goetz S J, Prince S D. Remote sensing of net primary production in boreal forest stands. Agricultural and Forest Meteorology, 1996, 78: 149-179.
[14] Monteith J L. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 1972, 9:747-766.
[15] Monteith J L. Climate and efficiency of crop production in Britain. Phil. Trans. Royal Soc. London, B, 1977, 281: 277-294.
[16] Sun Rui, Zhu Qijiang. Net primary productivity of terrestrial vegetation: a review on related researches. Chinese Journal of Applied Ecology, 1999, 10(6): 757-760.
[孙睿, 朱启疆. 陆地植被净第一性生产力的研究. 应用生态学报, 1999, 10(6): 757-760.]
[17] Sun Rui, Zhu Qijiang. Study on net primary productivity and seasonal changes of terrestrial vegetation in China. Acta Geographica Sinica, 2000, 55 (1): 36-45.
[孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究. 地理学报. 2000, 55 (1): 36-45.]
[18] Sun Rui, Zhu Qijiang. Primary study on the effect of climate change on net primary productivity of terrestrial vegetation in China. Journal of Remote Sensing, 2001, 5(1): 58-61.
[孙睿, 朱启疆. 气候变化对中国陆地植被净第一性生产力影响的初步研究. 遥感学报, 2001, 5(1): 58-61.]
[19] Running S W, Nemani R, Glassy J M. MOD17 PSN/NPP Algorithm Theoretical Basis Document, NASA. 1996.
[20] Prince S D. Global primary production: a remote sensing approach. Journal of Biogeography, 1995, 22: 316-336.
[21] Goetz S J, Prince S D. Variability in carbon exchange and light utilization among boreal forest stands: implications for remote sensing of net primary production. Canadian Journal of Forest Research, 1998, 28: 375-389.
[22] Goetz S J, Prince S D. Modeling terrestrial carbon exchange and storage: the evidence for and implications of functional convergence in light use efficiency. Advances in Ecological Research, 1999, 28: 57-92.
[23] Asner G P, Elmore A J, Olander L P et al. Grazing systems and global change. Annual Reviews of Environment and Resources, 2004, 29: 261-299.
[24] Asner G P, Lobell D B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, 2000, 74: 99-112.
[25] Asner G P, Heidebrecht K B. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 2002, 23: 3939-3958.
[26] Philip E D, Dar A R. Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sensing of Environment 2003, 87: 123-135.
[27] Steven M D, Biscoe P V, Jaggard K W. Estimation of sugar beet productivity from reflection in the red and infrared bands. International Journal of Remote Sensing, 1983, 4(2): 325-334.
[28] Tucker C J, Vanpraet C L, Boerwinkel E et al. Satellite remote sensing of total dry accumulation in the Senegalese Sahel. Remote Sensing of Environment, 1983, 13: 461-474.
[29] Prince S D, Tucker C J. Satellite remote sensing of rangelands in Bostwana. Part II: NOAA AVHRR and herbaceous vegetation. International Journal of Remote Sensing, 1986, 7(11): 1555-1570.
[30] Rouse J W, Haas J, Deering R H et al. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation; NASA/GSFC Type III Final Report, Greenbelt, MD. 1974. 371-373.
[31] Goward S M, Huemmrich K E. Vegetation canopy PAR absorptions and the Normalized Different Vegetation Index: an assessment using the SAIL model. Remote Sensing of Environment, 1992, 39: 119-140.
[32] Colltaz G J, Ball J T. Physiological and environmental regulation of stomata conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agriculture Forest Meteorology, 1991, 54: 107-136.
[33] Zhang Renhua. Models of Experimental Remote Sensing and Land Surface Base. Beijing: Science Press, 1996.
[张仁华. 实验遥感模型与地面基础. 北京: 科学出版社, 1996.]
[34] Runyon J, Waring R H, Goward S N et al. Enivronmental limits on net primary productivity and light-use efficient across the Oregon transect. Ecological Application, 1993, 4: 226-237.
[35] Goetz S J, Prince S D, Goward S N et al. Mapping net primary production and related biophysical variables with remote sensing: application to the BOREAS region. Journal of Geophysical Research, 1999, 104(22): 27719-27733.
[36] Zhou Guangsheng, Zhang Xinshi. Climate-vegetation classification of China under global climate change. Acta Botanica Sinica, 1996, 38(1): 8-17.
[周广胜, 张新时. 全球气候变化的中国气候-植被分类研究. 植物学报, 1996, 38(1): 8-17.]
[37] Zhang Xinshi. PE indices of vegetation and climate-vegetation classification (II). Journal of Plant Ecology and Geographical Plant, 1989, 13(3): 197-207.
[张新时. 植被的PE指标与植被-气候分类 (二). 植物生态学与地植物学学报, 1989, 13(3): 197-207.]
[38] Thornthwaite C W. An approach toward rational classification of climate. Geographic Review, 1948, 38: 55-94.
[39] Leemans R, Cramer W P. The IIASA database for mean monthly values of temperature, precipitation, and cloudiness on a global terrestrial grid: international institute for applied systems analysis, Luxemburg, Austria, 1991, 62-63.
[40] Chen L J, Liu G H, Feng X. Estimating net primary productivity of terrestrial vegetation in China using remote sensing. Acta Botanica Sinica, 2001, 43(11): 1191-1198.
[41] Guo Ke. Flora composition and distribution characters of vegetation in Karakorum-Kunlun Mountains. Acta Phytoecologca Sinica, 1997, 21(2): 105-114.
[郭柯. 喀喇昆仑山-昆仑山植物区系组成与分布特点. 植物生态学报, 1997, 21(2): 105-114.]
[42] Li Shiying. The characters, formation of vegetation and the relationship with drying in the northern bajada of Kunlun Mountain. Acta Botanica Sinica, 1960, 9(1): 16-31.
[李世英. 昆仑山北坡植被的特点、形成及其与旱化的关系. 植物学报, 1960, 9(1): 16-31.]
[43] Li Shiying. Vegetation and Its Utilization in Xinjiang. Beijing: Science Press, 1978.
[李世英. 新疆植被及其利用. 北京: 科学出版社, 1978.]
[44] Running S W, Thornton P E, Nemani R et al. Global terrestrial gross and net primary productivity from the earth observing system. In: Sala O R, Jackson and Springer Verlag, 2000. 44-57.
[45] Chen Binghao, Li Huqun. Study on the biomass of natural Populus diversifolia forest in the middle reaches of the Tarim River. Xinjiang Forestry Science and Technology, 1984, 3: 8-16.
[陈炳浩, 李护群. 新疆塔里木河中游胡杨天然林生物量的研究. 新疆林业科技, 1984, 3: 8-16.]
[46] http://159.226.111.50/gxiang/index.asp?name=datashare&pass=datashare.
[47] http://www.daac.ornl.gov/NPP/npp_home.html.
|