地理学报 ›› 2023, Vol. 78 ›› Issue (5): 1104-1118.doi: 10.11821/dlxb202305004
收稿日期:
2022-11-28
修回日期:
2023-05-06
出版日期:
2023-05-25
发布日期:
2023-05-27
通讯作者:
曹巍(1982-), 男, 湖北武汉人, 博士, 副研究员, 主要从事区域生态系统评估研究。E-mail: Caowei@igsnrr.ac.cn作者简介:
王欠鑫(2000-), 女, 四川广元人, 硕士生, 主要从事生态环境遥感与信息系统研究。E-mail: wangqianxin8940@igsnrr.ac.cn
基金资助:
WANG Qianxin1,2(), CAO Wei1(
), HUANG Lin1
Received:
2022-11-28
Revised:
2023-05-06
Published:
2023-05-25
Online:
2023-05-27
Supported by:
摘要:
作为地球“第三极”的青藏高原是中国重要的生态安全屏障区,也是全球气候变化的生态敏感区,日益加剧的气候变化对其生态系统功能及稳定性也构成了重大挑战。本文首先分析了2000—2020年青藏高原生态系统格局及其水源涵养、土壤保持、防风固沙等关键功能的时空变化特征,明晰了生态系统功能及其重要性的区域差异,进一步评估了生态系统功能的稳定性状态,将为青藏高原打造生态文明高地、实施保护和修复工程奠定科学基础。结果表明:① 2000—2020年青藏高原湿地面积增加而草地面积明显减少,水源涵养和防风固沙能力有所改善,年变化率分别为3.57 m3/(hm2·a)、0.23 t/(hm2·a),但土壤保持量整体却呈下降趋势,年变化率为-0.16 t/(hm2·a);② 青藏高原水源涵养、土壤保持和防风固沙功能的核心区面积占比分别为12.7%、13.9%和14.2%,其中水源涵养核心功能区以藏东南、三江源、若尔盖为主,防风固沙核心功能区集中在高原中西部,土壤保持核心功能区则环绕高原;③ 2000—2020年青藏高原水源涵养、土壤保持以及防风固沙功能在高原东南部、中部呈现较高的稳定性,而在高原西部稳定性相对较弱,结合稳定性评估与生态保护修复实践,可将青藏高原区划为三大类16个生态系统功能区,针对不同核心生态系统功能与不同分区开展差异化的生态保护与修复。
王欠鑫, 曹巍, 黄麟. 青藏高原生态系统功能稳定性演化特征及分区[J]. 地理学报, 2023, 78(5): 1104-1118.
WANG Qianxin, CAO Wei, HUANG Lin. Evolutionary characteristics and zoning of ecosystem functional stability on the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2023, 78(5): 1104-1118.
表1
2000—2020年青藏高原生态系统类型面积变化(km2)
年份 | 数据源 | 生态系统类型 | ||||||
---|---|---|---|---|---|---|---|---|
农田 | 森林 | 草地 | 湿地 | 城镇 | 荒漠 | 其他 | ||
2000—2010年 | i | -147.4 | -154.2 | -715.7 | 602.5 | 432.1 | -52.9 | 36.2 |
ii | -516.6 | 4546.6 | -1441.5 | 7705.5 | 47.1 | -18980.8 | 8639.7 | |
iii | -75.9 | 241.7 | -36284.7 | 7197.6 | 202.0 | 21188.9 | 7534.0 | |
iv | -420.5 | -3249.8 | -16470.0 | 1722.4 | 6.2 | 16458.5 | 259.6 | |
2010—2020年 | i | -130.5 | -106.1 | -1478.9 | 1476.9 | 591.8 | -553.2 | 201.6 |
ii | -939.2 | 2499.9 | -1748.5 | 4064.2 | 24.8 | 6901.9 | -10803.3 | |
iii | 3885.9 | -294.9 | -83176.1 | 7741.2 | 2038.7 | 56565.5 | 13241.2 | |
iv | -269.1 | -10938.3 | -214780.0 | 7247.4 | 2.2 | 47699.7 | -5776.2 | |
2000—2020年 | i | -277.9 | -260.4 | -2194.7 | 2079.4 | 1024.0 | -606.1 | 237.8 |
ii | -1455.9 | 7046.6 | -3190.0 | 11769.8 | 71.9 | -12078.9 | -2163.6 | |
iii | 3810.0 | -53.3 | -9807.9 | 3815.4 | 2240.7 | 77754.4 | 20775.2 | |
iv | -689.6 | -14188.1 | -231250.0 | 8969.8 | 8.4 | 64158.2 | -5516.6 |
[1] |
Costanza R, Darge R, Groot R, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387(6630): 253-260.
doi: 10.1038/387253a0 |
[2] |
Han R, Feng C C, Xu N Y, et al. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Science of the Total Environment, 2020, 721: 137818. DOI: 10.1016/jscitotenw.2020.137818.
doi: 10.1016/jscitotenw.2020.137818 |
[3] | Ministry of Ecology and Environment of the People's Republic of China. China Ecological Environment Status Bulletin 2021 (Excerpt). Environment Protection, 2022, 50(12): 61-74. |
[ 中华人民共和国生态环境部. 2021年中国生态环境状况公报(摘录). 环境保护, 2022, 50(12): 61-74.] | |
[4] |
Niu Linan, Shao Quanqin, Ning Jia, et al. Ecological changes and the tradeoff and synergy of ecosystem services in western China. Acta Geographica Sinica, 2022, 77(1): 182-195.
doi: 10.11821/dlxb202201013 |
[ 牛丽楠, 邵全琴, 宁佳, 等. 西部地区生态状况变化及生态系统服务权衡与协同. 地理学报, 2022, 77(1): 182-195.]
doi: 10.11821/dlxb202201013 |
|
[5] |
Xu C, Jiang Y N, Su Z H, et al. Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China. Ecological Indicators, 2022, 137: 108757. DOI: 10.1016/j.ecolind.2022.108757.
doi: 10.1016/j.ecolind.2022.108757 |
[6] | Bai Yongfei, Zhao Yujin, Wang Yang, et al. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in northern China. Bulletin of Chinese Academy of Sciences, 2020, 35(6): 675-689. |
[ 白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设. 中国科学院院刊, 2020, 35(6): 675-689.] | |
[7] | Li Yuehao, Wang Xiaofeng, Chu Bingyang, et al. Spatiotemporal ecosystem evolution and driving mechanism in the Qinghai-Tibet Plateau ecological barrier area. Acta Ecologica Sinica, 2022, 42(21): 8581-8593. |
[ 李月皓, 王晓峰, 楚冰洋, 等. 青藏高原生态屏障生态系统时空演变及驱动机制. 生态学报, 2022, 42(21): 8581-8593.] | |
[8] | Song Wenlu, Zhang Hua. Research status and hotspots analysis of forest ecosystem stability based on CNKI. Forest Science and Technology, 2022, 591(3): 48-52. |
[ 宋文璐, 张华. 基于CNKI的森林生态系统稳定性研究现状与热点分析. 林业科技通讯, 2022, 591(3): 48-52.] | |
[9] |
Huang Jianhui, Han Xingguo. Biodiversity and ecosystem stability. Biodiversity Science, 1995, 3(1): 31-37.
doi: 10.17520/biods.1995006 |
[ 黄建辉, 韩兴国. 生物多样性和生态系统稳定性. 生物多样性, 1995, 3(1): 31-37.] | |
[10] | Liu Xinwei, Zhou Houcheng, Li Ping, et al. A conceptual analysis of ecosystem stability. Acta Ecologica Sinica, 2004, 24(11): 2635-2640. |
[ 柳新伟, 周厚诚, 李萍, 等. 生态系统稳定性定义剖析. 生态学报, 2004, 24(11): 2635-2640.] | |
[11] | Chen Jijing, Zhou Lei, Chi Yonggang. Review on research of spatial pattern and influencing mechanisms of terrestrial ecosystem stability. Chinese Journal of Agrometeorology, 2021, 42(7): 552-560. |
[ 陈集景, 周蕾, 迟永刚. 陆地生态系统稳定性空间格局及影响机制研究综述. 中国农业气象, 2021, 42(7): 552-560.] | |
[12] |
Zhong Cheng, He Zongyi, Liu Shuzhen. Evaluation of eco-environmental stability in Tibet. Scientia Geographica Sinica, 2005, 25(5): 573-578.
doi: 10.13249/j.cnki.sgs.2005.05.573 |
[ 钟诚, 何宗宜, 刘淑珍. 西藏生态环境稳定性评价研究. 地理科学, 2005, 25(5): 573-578.] | |
[13] | Wang Hao, Ma Xing, Du Yong. Constructing ecological security patterns based on ecological service importance and ecological sensitivity in Guangdong Province. Acta Ecologica Sinica, 2021, 41(5): 1705-1715. |
[ 王浩, 马星, 杜勇. 基于生态系统服务重要性和生态敏感性的广东省生态安全格局构建. 生态学报, 2021, 41(5): 1705-1715.] | |
[14] | Cui Ning, Yu Enyi, Li Shuang, et al. Protection measures of plateau lake based on ecosystem sensitivity and importance of ecosystem function: The case of Lake Dalinor Basin. Acta Ecologica Sinica, 2021, 41(3): 949-958. |
[ 崔宁, 于恩逸, 李爽, 等. 基于生态系统敏感性与生态功能重要性的高原湖泊分区保护研究: 以达里湖流域为例. 生态学报, 2021, 41(3): 949-958.] | |
[15] |
Sun Honglie, Zheng Du, Yao Tandong, et al. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 2012, 67(1): 3-12.
doi: 10.11821/xb201201001 |
[ 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12.]
doi: 10.11821/xb201201001 |
|
[16] | Lan Xiangyu, Ye Chongchong, Wang Yi, et al. Spatiotemporal variation characteristics and its driving forces of water conservati on function on the Tibetan Plateau from 1995 to 2014. Acta Agrestia Sinica, 2021, 29 (Suppl.1): 80-92. |
[ 兰翔宇, 叶冲冲, 王毅, 等. 1995—2014年青藏高原水源涵养功能时空演变特征及其驱动力分析. 草地学报, 2021, 29 (Suppl.1): 80-92.] | |
[17] | Wang Yaqiong, Liu Yan, A Yan, et al. Spatial and temporal variation of soil conservation capability of vegetation in three-river headwaters region. Research of Environmental Sciences, 2016, 29(7): 1023-1031. |
[ 王雅琼, 刘彦, 阿彦, 等. 三江源植被保持土壤能力的时空变化. 环境科学研究, 2016, 29(7): 1023-1031.] | |
[18] |
Shao Quanqin, Fan Jiangwen, Liu Jiyuan, et al. Assessment on the effects of the first-stage ecological conservation and restoration project in Sanjiangyuan region. Acta Geographica Sinica, 2016, 71(1): 3-20.
doi: 10.11821/dlxb201601001 |
[ 邵全琴, 樊江文, 刘纪远, 等. 三江源生态保护和建设一期工程生态成效评估. 地理学报, 2016, 71(1): 3-20.]
doi: 10.11821/dlxb201601001 |
|
[19] | Jing Haichao, Liu Yinghui, He Pei, et al. Spatial heterogeneity of ecosystem services and its influencing factors in typical areas of the Qinghai-Tibet Plateau: A case study of Nagqu City. Acta Ecologica Sinica, 2022, 42(7): 2657-2673. |
[ 景海超, 刘颖慧, 贺佩, 等. 青藏高原典型区生态系统服务空间异质性及其影响因素分析: 以那曲市为例. 生态学报, 2022, 42(7): 2657-2673.] | |
[20] | Fu Mengdi, Tang Wenjia, Liu Weiwei, et al. Ecological risk assessment and spatial identification of ecoloqical restoration from the ecosystem service perspective: A case study in source region of Yangtze River. Acta Ecologica Sinica, 2021, 41(10): 3846-3855. |
[ 付梦娣, 唐文家, 刘伟玮, 等. 基于生态系统服务视角的生态风险评估及生态修复空间辨识: 以长江源区为例. 生态学报, 2021, 41(10): 3846-3855.] | |
[21] |
Liu M X, Gao Y, Wei H J, et al. Profoundly entwined ecosystem services, land-use change and human well-being into sustainability management in Yushu, Qinghai-Tibet Plateau. Journal of Geographical Sciences, 2022, 32(9): 1745-1765.
doi: 10.1007/s11442-022-2021-6 |
[22] | Fu Bojie, Ouyang Zhiyun, Shi Peng, et al. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier. Bulletin of Chinese Academy of Sciences, 2021, 36(11): 1298-1306. |
[ 傅伯杰, 欧阳志云, 施鹏, 等. 青藏高原生态安全屏障状况与保护对策. 中国科学院院刊, 2021, 36(11): 1298-1306.] | |
[23] | Liu Junhui, Gao Jixi, Nie Yihuang. Measurement and dynamic changes of ecosystem services value for the Tibetan Plateau based on remote sensing techniques. Geography and Geo-Information Science, 2009, 25(3): 81-84. |
[ 刘军会, 高吉喜, 聂亿黄. 青藏高原生态系统服务价值的遥感测算及其动态变化. 地理与地理信息科学, 2009, 25(3): 81-84.] | |
[24] |
Feng Zhiming, Li Wenjun, Li Peng, et al. Relief degree of land surface and its geographical meanings in the Qinghai-Tibet Plateau, China. Acta Geographica Sinica, 2020, 75(7): 1359-1372.
doi: 10.11821/dlxb202007003 |
[ 封志明, 李文君, 李鹏, 等. 青藏高原地形起伏度及其地理意义. 地理学报, 2020, 75(7): 1359-1372.]
doi: 10.11821/dlxb202007003 |
|
[25] |
Liu Jiyuan, Kuang Wenhui, Zhang Zengxiang, et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geographica Sinica, 2014, 69(1): 3-14.
doi: 10.11821/dlxb201401001 |
[ 刘纪远, 匡文慧, 张增祥, 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局. 地理学报, 2014, 69(1): 3-14.] | |
[26] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021 |
[27] | Chen J, Chen J, Liao A P, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry & Remote Sensing, 2015, 103(5): 7-27. |
[28] |
Zhang Wenbo, Xie Yun, Liu Baoyuan. Rainfall erosivity estimation using daily rainfall amounts. Scientia Geographica Sinica, 2002, 22(6): 705-711.
doi: 10.13249/j.cnki.sgs.2002.06.705 |
[ 章文波, 谢云, 刘宝元. 利用日雨量计算降雨侵蚀力的方法研究. 地理科学, 2002, 22(6): 705-711.] | |
[29] |
McCool D K, Brown L C, Foster G R, et al. Revised slope steepness factor for the universal soil loss equation. Transactions of the ASAE, 1987, 30(5): 1387-1396.
doi: 10.13031/2013.30576 |
[30] |
Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes. Transactions of the ASAE, 1994, 37(6): 1835-1840.
doi: 10.13031/2013.28273 |
[31] | Wu Dan. Research on water conservation services of major terrestrial ecosystems in China[D]. Beijing: University of Chinese Academy of Sciences, 2014. |
[ 吴丹. 中国主要陆地生态系统水源涵养服务研究[D]. 北京: 中国科学院大学, 2014.] | |
[32] | Xiao Q, Hu D, Xiao Y. Assessing changes in soil conserved ecosystem services and causal factors in the Three Gorges Reservoir region of China. Journal of Cleaner Production, 2017, 163: 172-180. |
[33] | Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses:A Guide to Conservation Planning. Maryland: The USDA Agricultural Handbook No.537, 1978. |
[34] | Ministry of Environmental Protection, National Development and Reform Commission. Guidelines for Delineating Red Lines for Ecological Protection. https://www.mee.gov.cn/gkml/hbb/bgt/201707/W020170728397753220005.pdf, 2017-07-20. |
[ 环境保护部,国家发展和改革委员会. 生态保护红线划定指南. https://www.mee.gov.cn/gkml/hbb/bgt/201707/W020170728397753220005.pdf, 2017-07-20.] | |
[35] |
Gong Guoli, Liu Jiyuan, Shao Quanqin. Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the revised wind erosion equation. Progress in Geography, 2014, 33(6): 825-834.
doi: 10.11820/dlkxjz.2014.06.011 |
[ 巩国丽, 刘纪远, 邵全琴. 基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究. 地理科学进展, 2014, 33(6): 825-834.]
doi: 10.11820/dlkxjz.2014.06.011 |
|
[36] | Fryrear W D, Bilbro D J, Saleh A, et al. RWEQ: Improved wind erosion technology. Journal of Soil and Water Conservation, 2000, 55(2): 183-189. |
[37] |
Zhu Hanshou, Zhai Jun, Hou Peng, et al. The protection characteristics of key ecological functional zones from the perspective of ecosystem service trade-off and synergy. Acta Geographica Sinica, 2022, 77(5): 1275-1288.
doi: 10.11821/dlxb202205016 |
[ 祝汉收, 翟俊, 侯鹏, 等. 生态系统服务权衡与协同视角下的重点生态功能区保护特征. 地理学报, 2022, 77(5): 1275-1288.]
doi: 10.11821/dlxb202205016 |
|
[38] | Zhang Changshun, Xie Gaodi, Liu Chunlan, et al. Evaluation of water conservation of China's ecosystems based on benchmark. Acta Ecologica Sinica, 2022, 42(22): 9250-9260. |
[ 张昌顺, 谢高地, 刘春兰, 等. 基于水源涵养参照系的中国生态系统水源涵养功能优劣评估. 生态学报, 2022, 42(22): 9250-9260.] | |
[39] | Zhu Dianzhen, Chu Lei, Ma Shuai, et al. Tradeoff and synergistic relationship among ecosystem services. Research of Soil and Water Conservation, 2021, 28(4): 308-315. |
[ 朱殿珍, 初磊, 马帅, 等. 青藏高原生态屏障区生态系统服务权衡与协同关系. 水土保持研究, 2021, 28(4): 308-315.] | |
[40] |
Mo Xingguo, Liu Suxia, Hu Shi. Co-evolution of climate-vegetation-hydrology and its mechanisms in the source region of Yellow River. Acta Geographica Sinica, 2022, 77(7): 1730-1744.
doi: 10.11821/dlxb202207011 |
[ 莫兴国, 刘苏峡, 胡实. 黄河源区气候—植被—水文协同演变及成因辨析. 地理学报, 2022, 77(7): 1730-1744.]
doi: 10.11821/dlxb202207011 |
|
[41] | Di Yangping, Zhang Yangjian, Zeng Hui, et al. Effects of changed Asian water tower on Tibetan Plateau ecosystem: A review. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1322-1331. |
[ 底阳平, 张扬建, 曾辉, 等. “亚洲水塔”变化对青藏高原生态系统的影响. 中国科学院院刊, 2019, 34(11): 1322-1331.] | |
[42] | Ding Jia, Liu Xingyu, Guo Yuchao, et al. Study on vegetation change in the Qinghai-Tibet Plateau from 1980 to 2015. Ecology and Environmental Sciences, 2021, 30(2): 288-296. |
[ 丁佳, 刘星雨, 郭玉超, 等. 1980—2015年青藏高原植被变化研究. 生态环境学报, 2021, 30(2): 288-296.]
doi: 10.16258/j.cnki.1674-5906.2021.02.007 |
|
[43] |
Feng Yuxue, Li Guangdong. Interaction between urbanization and eco-environment in Tibetan Plateau. Acta Geographica Sinica, 2020, 75(7): 1386-1405.
doi: 10.11821/dlxb202007005 |
[ 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析. 地理学报, 2020, 75(7): 1386-1405.]
doi: 10.11821/dlxb202007005 |
|
[44] |
Li S C, Wang Z F, Zhang Y L. Crop cover reconstruction and its effects on sediment retention in the Tibetan Plateau for 1900-2000. Journal of Geographical Sciences, 2017, 27(7): 786-800.
doi: 10.1007/s11442-017-1406-4 |
[45] |
Hu Xiaoyang, Wang Zhaofeng, Zhang Yili, et al. Spatialization method of grazing intensity and its application in Tibetan Plateau. Acta Geographica Sinica, 2022, 77(3): 547-558.
doi: 10.11821/dlxb202203004 |
[ 胡晓阳, 王兆锋, 张镱锂, 等. 青藏高原放牧强度空间化方法与应用. 地理学报, 2022, 77(3): 547-558.]
doi: 10.11821/dlxb202203004 |
|
[46] |
Huang Lin, Zhai Jun, Zhu Ping, et al. Spatiotemporal evolution characteristics of livestock-carrying pressure in China and its implications for grassland ecosystem conservation pattern. Acta Geographica Sinica, 2020, 75(11): 2396-2407.
doi: 10.11821/dlxb202011009 |
[ 黄麟, 翟俊, 祝萍, 等. 中国草畜平衡状态时空演变指示的草地生态保护格局. 地理学报, 2020, 75(11): 2396-2407.]
doi: 10.11821/dlxb202011009 |
|
[47] | Gong Shihan, Xiao Yang, Zheng Hua, et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecologica Sinica, 2017, 37(7): 2455-2462. |
[ 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素. 生态学报, 2017, 37(7): 2455-2462.] | |
[48] |
Wu Yijin, Zhao Xingshuang, Xi Yue, et al. Comprehensive evaluation and spatial-temporal changes of eco-environmental quality based on MODIS in Tibet during 2006-2016. Acta Geographica Sinica, 2019, 74(7): 1438-1449.
doi: 10.11821/dlxb201907012 |
[ 吴宜进, 赵行双, 奚悦, 等. 基于MODIS的2006—2016年西藏生态质量综合评价及其时空变化. 地理学报, 2019, 74(7): 1438-1449.]
doi: 10.11821/dlxb201907012 |
[1] | 刘庆芳, 杨定, 杨振山, 宋金平, 陈东军. 青藏高原国家公园群人文生态系统耦合协调评价及障碍因子识别[J]. 地理学报, 2023, 78(5): 1119-1135. |
[2] | 刘若杨, 史培军, 唐海萍, 王静爱, 赵涔良, 朱文泉. 青藏高原植被产氧量及其对近地表大气氧含量的贡献率[J]. 地理学报, 2023, 78(5): 1136-1152. |
[3] | 史培军, 胡小康, 陈彦强, 张慧, 杨合仪, 胡金鹏, 杨雯倩, 贾伟, 马伟东, 姜璐, 张钢锋, 蒲小燕, 郝力壮, 王静爱, 朱文泉, 马永贵, 唐海萍, 陈志. 青藏高原地表大气氧含量空间格局及自然地带“三维分异”的新认识[J]. 地理学报, 2023, 78(3): 532-547. |
[4] | 陈惺, 王军邦, 何启凡, 王春雨, 叶辉. 未来气候情景下中国植被净初级生产力稳定性及气候影响[J]. 地理学报, 2023, 78(3): 694-713. |
[5] | 沈麒凯, 刘修国, 周欣, 张正加, 陈启浩. 2002—2020年青藏高原近地表土壤日冻融循环时空变化模式[J]. 地理学报, 2023, 78(3): 587-603. |
[6] | 张媛钰, 贾涛. 基于轨迹数据的多层网络动态社区提取与时空变化分析[J]. 地理学报, 2023, 78(2): 490-502. |
[7] | 潘锋, 何大明, 曹杰, 陆颖. 夏季怒江流域水汽输送多支特征及对降水影响[J]. 地理学报, 2023, 78(1): 87-100. |
[8] | 吕恒, 王伟, 万梓文, 李雨竹, 楚淏然, 赖宇婧, 张珂菡, 石婕. 1991—2010年全球湖泊表面温度效应的时空格局及生物物理因子拆分[J]. 地理学报, 2022, 77(9): 2266-2279. |
[9] | 方创琳. 青藏高原城镇化发展的特殊思路与绿色发展路径[J]. 地理学报, 2022, 77(8): 1907-1919. |
[10] | 姚檀栋, 王伟财, 安宝晟, 朴世龙, 陈发虎. 1949—2017年青藏高原科学考察研究历程[J]. 地理学报, 2022, 77(7): 1586-1602. |
[11] | 徐勇, 王丽佳, 杨华. 青藏高原土地资源人类活动适宜性评价方法及实证应用[J]. 地理学报, 2022, 77(7): 1615-1633. |
[12] | 陈发虎, 王亚军, 丁林, 姚檀栋. 1949年以前青藏高原探险和科学考察活动概况[J]. 地理学报, 2022, 77(7): 1565-1585. |
[13] | 李崇巍, 王志慧, 汤秋鸿, 胡青峰, 肖培青, 吕锡芝, 刘杨. 1986—2019年黄河流域地表水体动态变化及其影响因素[J]. 地理学报, 2022, 77(5): 1153-1168. |
[14] | 申泽西, 张强, 吴文欢, 宋长青. 青藏高原及横断山区地质灾害易发区空间格局及驱动因子[J]. 地理学报, 2022, 77(5): 1211-1224. |
[15] | 胡晓阳, 王兆锋, 张镱锂, 宫殿清. 青藏高原放牧强度空间化方法与应用[J]. 地理学报, 2022, 77(3): 547-558. |