地理学报 ›› 2023, Vol. 78 ›› Issue (5): 1059-1073.doi: 10.11821/dlxb202305001

• 灾害研究 •    下一篇

中国山洪区划研究

陈跃红1(), 徐聪聪1, 张晓祥1(), 张若婧1, 马强2, 刘昌军2, 任立良1, 时开鑫1   

  1. 1.河海大学水文水资源学院,南京 210098
    2.中国水利水电科学研究院减灾中心,北京 100038
  • 收稿日期:2022-08-29 修回日期:2023-02-12 出版日期:2023-05-25 发布日期:2023-05-27
  • 通讯作者: 张晓祥(1979-), 男, 江苏南通人, 教授, 主要从GIS空间分析与建模和数字孪生流域研究。E-mail: xiaoxiang@hhu.edu.cn
  • 作者简介:陈跃红(1987-), 男, 四川遂宁人, 副教授, 中国地理学会会员(S110013005M), 主要从事地理大数据与空间智能研究。E-mail: chenyh@lreis.ac.cn
  • 基金资助:
    国家重点研发计划(2019YFC1510601);广西省重点研发计划(2019AB20003);湖南省水利科技项目(XSKJ2019081-17)

Regionalization of flash floods in China

CHEN Yuehong1(), XU Congcong1, ZHANG Xiaoxiang1(), ZHANG Ruojing1, MA Qiang2, LIU Changjun2, REN Liliang1, SHI Kaixin1   

  1. 1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
    2. Research Center on Flood and Drought Disaster Reduction, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
  • Received:2022-08-29 Revised:2023-02-12 Published:2023-05-25 Online:2023-05-27
  • Supported by:
    National Key R&D Program of China(2019YFC1510601);Key R&D Program of Guangxi Province(2019AB20003);Water Resources Science Technology Program of Hunan Province(XSKJ2019081-17)

摘要:

根据水利部2020年统计结果,中国山洪灾害伤亡人数占洪涝灾害的近70%,已成为造成人员伤亡的主要自然灾害之一。山洪区划是进行因地制宜地实施山洪灾害防治管理的重要基础。本文在吸纳现有与山洪相关的自然地理区划成果基础上,按照综合性与主导性、相似性和差异性以及完整性和等级性原则,从山洪灾害的致灾因子和孕灾环境两方面构建中国山洪区划指标体系,采用自上而下与自下而上相结合的区划思路构建了基于自组织神经网络的混合聚类方法,制定了包含9个区划单元的中国山洪一级区划方案和33个区划单元的中国山洪二级区划方案。以1951—2015年全国历史山洪事件点调查值为基础,利用地理探测器进行客观评价发现,本文制定的一级和二级区划方案对历史山洪事件空间分布的解释力分别达到66.4%和75.4%,表明本文制定的中国山洪区划方案与历史山洪事件的疏密分布规律吻合度较高。本文制定的中国山洪区划方案不仅有效刻画了山洪的地区分异规律,而且为实行因地制宜的山洪灾害防治减灾措施提供了科学依据,有利于推动中国山洪灾害预警预报与防治管理事业的稳健发展。

关键词: 区划, 山洪灾害, 短历时强降雨, 下垫面, 机器学习, 中国

Abstract:

According to the Ministry of Water Resources of the People's Republic of China, the number of casualties in flash flood disasters accounts for nearly 70% of flood disaster casualties in recent years and flash flood has become one of the major natural disasters causing casualties in China. Flash flood regionalization is fundamental for implementing the local measures of the flash flood prevention and mitigation according to local conditions. Using results from existing flash flood relevant physiographical regionalization schemes, and in accordance with the principles of comprehensive, dominant factors, the relative consistency within units, the relative difference between units, the integrity of spatial distribution and the hierarchical divisions, this paper firstly constructs an index system of the flash flood trigger factors and its underlying surface environment for the flash flood regionalization in China. In the combination of top-down and bottom-up regionalization, the hybrid self-organizing-map-based spatial clustering algorithm is then built. Finally, nine homogeneous regions at the first-grade and thirty-three subregions at the second-grade are delineated for flash floods in China. The historical flash flood events and the Geodetector method are adopted to evaluate the developed regionalization schemes. Results show that the first-grade and the second-grade flash flood regionalization schemes in China can respectively provide the determinant power of 66.4% and 75.4% for the spatial distribution of historical flash flood events in the whole country, indicating the developed flash flood regionalization has a good spatial consistency with the distribution of historical flash flood events with different densities. The developed flash flood regionalization not only effectively delineates the regional differentiation pattern of flash floods, but also provides a scientific basis for the implementation of localized flash flood prevention and mitigation measures in China, which benefits for the sound development of flash flood disasters prevention and management in China.

Key words: regionalization, flash flood disaster, short-duration heavy rainfall, underlying surface, machine learning, China