地理学报 ›› 2023, Vol. 78 ›› Issue (5): 1059-1073.doi: 10.11821/dlxb202305001
• 灾害研究 • 下一篇
陈跃红1(), 徐聪聪1, 张晓祥1(
), 张若婧1, 马强2, 刘昌军2, 任立良1, 时开鑫1
收稿日期:
2022-08-29
修回日期:
2023-02-12
出版日期:
2023-05-25
发布日期:
2023-05-27
通讯作者:
张晓祥(1979-), 男, 江苏南通人, 教授, 主要从GIS空间分析与建模和数字孪生流域研究。E-mail: xiaoxiang@hhu.edu.cn作者简介:
陈跃红(1987-), 男, 四川遂宁人, 副教授, 中国地理学会会员(S110013005M), 主要从事地理大数据与空间智能研究。E-mail: chenyh@lreis.ac.cn
基金资助:
CHEN Yuehong1(), XU Congcong1, ZHANG Xiaoxiang1(
), ZHANG Ruojing1, MA Qiang2, LIU Changjun2, REN Liliang1, SHI Kaixin1
Received:
2022-08-29
Revised:
2023-02-12
Published:
2023-05-25
Online:
2023-05-27
Supported by:
摘要:
根据水利部2020年统计结果,中国山洪灾害伤亡人数占洪涝灾害的近70%,已成为造成人员伤亡的主要自然灾害之一。山洪区划是进行因地制宜地实施山洪灾害防治管理的重要基础。本文在吸纳现有与山洪相关的自然地理区划成果基础上,按照综合性与主导性、相似性和差异性以及完整性和等级性原则,从山洪灾害的致灾因子和孕灾环境两方面构建中国山洪区划指标体系,采用自上而下与自下而上相结合的区划思路构建了基于自组织神经网络的混合聚类方法,制定了包含9个区划单元的中国山洪一级区划方案和33个区划单元的中国山洪二级区划方案。以1951—2015年全国历史山洪事件点调查值为基础,利用地理探测器进行客观评价发现,本文制定的一级和二级区划方案对历史山洪事件空间分布的解释力分别达到66.4%和75.4%,表明本文制定的中国山洪区划方案与历史山洪事件的疏密分布规律吻合度较高。本文制定的中国山洪区划方案不仅有效刻画了山洪的地区分异规律,而且为实行因地制宜的山洪灾害防治减灾措施提供了科学依据,有利于推动中国山洪灾害预警预报与防治管理事业的稳健发展。
陈跃红, 徐聪聪, 张晓祥, 张若婧, 马强, 刘昌军, 任立良, 时开鑫. 中国山洪区划研究[J]. 地理学报, 2023, 78(5): 1059-1073.
CHEN Yuehong, XU Congcong, ZHANG Xiaoxiang, ZHANG Ruojing, MA Qiang, LIU Changjun, REN Liliang, SHI Kaixin. Regionalization of flash floods in China[J]. Acta Geographica Sinica, 2023, 78(5): 1059-1073.
表1
中国山洪区划指标体系
指标类型 | 指标名称 | 指标描述 | 指标来源 |
---|---|---|---|
下垫面 | 高程 | 区域平均海拔高度(90 m×90 m栅格) | SRTM3 V4.1数据 ( |
高差 | 区域最大和最小高程之差(90 m×90 m栅格) | ||
坡度 | 根据高程数据计算得到(90 m×90 m栅格) | ||
流域相对高程 | 基于高程数据计算的距离最近河道的高程(90 m×90 m栅格) | MERIT Hydro ( | |
植被指数 | 小流域内年度植被指数的平均值 (1 km×1 km栅格) | 2015年度中国植被指数 ( | |
平原、台地、丘陵、小起伏山地、中起伏山地、大起伏山地、极大起伏山地的占比 | 根据地貌图集计算区域内7个地貌类型的占比(1 km×1 km栅格) | 《中华人民共和国地貌图集(1∶100万)》 ( | |
耕地、林地、草地、水域、建设用地、未利用地、海洋占比 | 根据土地利用数据计算区域内7个土地利用类型的占比(1 km×1 km栅格) | 2020年中国土地利用数据(1 km) ( | |
降雨 | 100 a、50 a、20 a、5 a、2 a一遇最大1 h降雨量 | 基于ERA5卫星降水再分析产品,采用皮尔逊III(P-III)曲线[ | ERA5卫星降水再分析产品 ( |
100 a、50 a、20 a、5 a、2 a一遇最大3 h降雨量 | |||
100 a、50 a、20 a、5 a、2 a一遇最大6 h降雨量 | |||
100 a、50 a、20 a、5 a、2 a一遇最大12 h降雨量 | |||
100 a、50 a、20 a、5 a、2 a一遇最大24 h降雨量 | |||
最大1 h、3 h、6 h、12 h、24 h降雨量均值 | 基于ERA5卫星降水再分析产品,统计计算出不同小时级的5个降雨均值指标(0.25°×0.25°栅格) | ||
年均降雨量 | 基于ERA5卫星降水再分析产品,统计年均降雨指标(0.25°×0.25°栅格) |
表2
中国山洪一级区划基本情况
区代码 | 名称 | 面积(万km2) | 空间范围 |
---|---|---|---|
I | 东北温带平水— 中易发区 | 89.9 | 该区域为大兴安岭中低山,小兴安岭低山,长白山中低山地,燕山辽西中低山。 |
II | 山东半岛暖温带多水—中易发区 | 7.4 | 该区域主要是山东半岛低山。 |
III | 东南亚热带丰水—高易发区 | 88.6 | 该区域主要分布在东南山地丘陵。东部为浙闽低中山、粤闽中低起伏山和台湾低山,北部为大别山中低山,中部包括湘赣小起伏低山丘陵,西部为湘东中低山地,南部为粤桂低山和海南岛。 |
IV | 西南亚热带多水—高易发区 | 125.3 | 该区域北部为秦巴中低山区,中部为川渝鄂低山丘陵区,南部为云贵高原和桂西北部中低山丘区。 |
V | 青藏高原南部温带平水—中易发区 | 75.4 | 该区域位于青藏高原的南部地区,东部为川西高原和横断山脉,西部为藏东高山区。 |
VI | 青藏高原北部亚寒带干旱—低易发区 | 176.6 | 该区域位于青藏高原的北部地区,北部为南疆阿尔金山和昆仑山高山区,东部主要为青海的大部分高山区,南部主要是喜马拉雅山极大起伏高山区,西部主要为喀喇昆仑山脉大起伏极高山区。 |
VII | 北疆温带干旱— 低易发区 | 41.1 | 该区域位于北疆高山区,北部主要为阿尔泰高山区,南部主要为天山高山地区。 |
VIII | 内蒙古中温带干旱—低易发区 | 33.4 | 该区域位于内蒙古山丘区,东部主要为阴山山脉地区,西部为内蒙古西部低山地区。 |
IX | 黄土高原温带平水—高易发区 | 45.4 | 该区域位于黄土高原区域,东部主要为太行山地区,西部主要为贺兰山和六盘水地区。 |
[1] | Zheng Du, Ou Yang, Zhou Chenghu. Understanding of and thinking over geographical regionalization methodology. Acta Geographica Sinica, 2008, 63(6): 563-573. |
[ 郑度, 欧阳, 周成虎. 对自然地理区划方法的认识与思考. 地理学报, 2008, 63(6): 563-573.] | |
[2] | Ren Meie, Yang Renzhang. Natural regionalization in China. Acta Geographica Sinica, 1961, 27: 66-74. |
[ 任美鳄, 杨纫章. 中国自然区划问题. 地理学报, 1961, 27: 66-74.]
doi: 10.11821/xb196100005 |
|
[3] |
Lee S T. Delimitation of the geographic regions of China. Annals of the Association of American Geographers, 1947, 37(3): 155-168.
doi: 10.1080/00045604709351955 |
[4] | Zheng Du, Wu Shaohong, Yin Yunhe, et al. Frontiers in terrestrial system research in China under global change. Acta Geographica Sinica, 2016, 71(9): 1475-1483. |
[ 郑度, 吴绍洪, 尹云鹤, 等. 全球变化背景下中国自然地域系统研究前沿. 地理学报, 2016, 71(9): 1475-1483.]
doi: 10.11821/dlxb201609001 |
|
[5] | Liu Yanhua, Zheng Du, Ge Quansheng, et al. Understanding of some problems in the study of comprehensive regionalization in China. Geographical Research, 2005, 24(3): 321-329. |
[ 刘燕华, 郑度, 葛全胜, 等. 关于开展中国综合区划研究若干问题的认识. 地理研究, 2005, 24(3): 321-329.] | |
[6] |
Gao Jiangbo, Huang Jiao, Li Shuangcheng, et al. The new progresses and development trends in the research of physio-geographical regionalization in China. Progress in Geography, 2010, 29(11): 1400-1407.
doi: 10.11820/dlkxjz.2010.11.032 |
[ 高江波, 黄姣, 李双成, 等. 中国自然地理区划研究的新进展与发展趋势. 地理科学进展, 2010, 29(11): 1400-1407.]
doi: 10.11820/dlkxjz.2010.11.032 |
|
[7] | Zhang Pingcang, Ren Hongyu, Hu Weizhong, et al. An elementary study on Chinese mountain torrents disaster prevention regionalization. Journal of Soil and Water Conservation, 2006, 20(6): 196-200. |
[ 张平仓, 任洪玉, 胡维忠, 等. 中国山洪灾害防治区划初探. 水土保持学报, 2006, 20(6): 196-200.] | |
[8] |
Xiong Junnan, Li Jin, Cheng Weiming, et al. Spatial-temporal distribution and the influencing factors of mountain flood disaster in southwest China. Acta Geographica Sinica, 2019, 74(7): 1374-1391.
doi: 10.11821/dlxb201907008 |
[ 熊俊楠, 李进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素. 地理学报, 2019, 74(7): 1374-1391.]
doi: 10.11821/dlxb201907008 |
|
[9] | Guo Liang, Ding Liuqian, Sun Dongya, et al. Key techniques of flash flood disaster prevention in China. Journal of Hydraulic Engineering, 2018, 49(9): 1123-1136. |
[ 郭良, 丁留谦, 孙东亚, 等. 中国山洪灾害防御关键技术. 水利学报, 2018, 49(9): 1123-1136.] | |
[10] | Wang N, Lombardo L, Tonini M, et al. Spatiotemporal clustering of flash floods in a changing climate (China, 1950-2015). Natural Hazards and Earth System Sciences, 2021, 21(7): 2109-2124. |
[11] | Zhang Ruojing, Chen Yuehong, Zhang Xiaoxiang, et al. Spatial-temporal pattern and driving factors of flash flood disasters in Jiangxi province analyzed by optimal parameters-based geographical detector. Geography and Geo-information Science, 2021, 37(4): 72-80. |
[ 张若婧, 陈跃红, 张晓祥, 等. 基于参数最优地理探测器的江西省山洪灾害时空格局与驱动力研究. 地理与地理信息科学, 2021, 37(4): 72-80.] | |
[12] |
Liu Yesen, Yang Zhenshan, Huang Yaohuan, et al. Spatio-temporal evolution pattern and driving factors of mountain torrents in China since the founding of the People's Republic of China. Science China Earth Sciences, 2019, 49(2): 408-420.
doi: 10.1007/s11430-006-0408-3 |
[ 刘业森, 杨振山, 黄耀欢, 等. 建国以来中国山洪灾害时空演变格局及驱动因素分析. 中国科学: 地球科学, 2019, 49(2): 408-420.]. | |
[13] | Fang Xiuqin, Wang Kai, Ren Liliang, et al. Risk assessment and zoning of mountain torrent disaster based on GIS in Jiangxi province. Journal of Catastrophology, 2017, 32(1): 111-116. |
[ 方秀琴, 王凯, 任立良, 等. 基于GIS的江西省山洪灾害风险评价与分区. 灾害学, 2017, 32(1): 111-116.] | |
[14] |
Zhou Chenghu, Wan Qing, Huang Shifeng, et al. A GIS-based approach to flood risk zonation. Acta Geographica Sinica, 2000, 55(1): 15-24.
doi: 10.11821/xb200001002 |
[ 周成虎, 万庆, 黄诗峰, 等. 基于GIS的洪水灾害风险区划研究. 地理学报, 2000, 55(1): 15-24.]
doi: 10.11821/xb200001002 |
|
[15] |
Tang Chuan, Zhu Jing. A GIS based regional torrent risk zonation. Acta Geographica Sinica, 2005, 60(1): 87-94.
doi: 10.11821/xb200501010 |
[ 唐川, 朱静. 基于GIS的山洪灾害风险区划. 地理学报, 2005, 60(1): 87-94.] | |
[16] |
Yao J, Zhang X X, Luo W C, et al. Applications of Stacking/Blending ensemble learning approaches for evaluating flash flood susceptibility. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102932. DOI: 10.1016/j.jag.2022.102932.
doi: 10.1016/j.jag.2022.102932 |
[17] | Ministry of Water Resources of the People's Republic of China. China has entered the flood season at present and local areas have caused flood disasters. 2020-06-14. http://www.mwr.gov.cn/ztpd/2019ztbd/2019fxkh/mtgz/202006/t20200614_1408327.html. |
[ 中华人民共和国水利部. 当前我国已经全面进入汛期局部地区发生了洪涝灾害. 2020-06-14. http://www.mwr.gov.cn/ztpd/2019ztbd/2019fxkh/mtgz/202006/t20200614_1408327.html.] | |
[18] | Liu Changjun, Zhou Jian, Wen Lei, et al. Research on spatio temporally-mixed runoff model and parameter regionalization for small and medium-sized catchments. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(1): 99-114. |
[ 刘昌军, 周剑, 文磊, 等. 中小流域时空变源混合产流模型及参数区域化方法研究. 中国水利水电科学研究院学报, 2021, 19(1): 99-114.] | |
[19] |
Zhao Shipeng. An integration of GIS and analytical models for evaluation of disasters caused by mountain torrents. Acta Geographica Sinica, 1996, 51(5): 471-479.
doi: 10.11821/xb199605010 |
[ 赵士鹏. 基于GIS的山洪灾情评估方法研究. 地理学报, 1996, 51(5): 471-479.]
doi: 10.11821/xb199605010 |
|
[20] | Zhao Shipeng. An elementary study on whole characteristics of mountain torrents disaster system in China and its hazard regionalization. Journal of Natural Disasters, 1996, 5(3): 93-99. |
[ 赵士鹏. 中国山洪灾害系统的整体特征及其危险度区划的初步研究. 自然灾害学报, 1996, 5(3): 93-99.] | |
[21] |
Zhang R J, Chen Y H, Zhang X X, et al. Mapping homogeneous regions for flash floods using machine learning: A case study in Jiangxi province, China. International Journal of Applied Earth Observation and Geoinformation, 2022, 108: 102717. DOI: 10.1016/j.jag.2022.102717.
doi: 10.1016/j.jag.2022.102717 |
[22] | Guo Ziliang, Cui Guofa. The comprehensive geographical regionalization of China supporting natural conservation. Acta Ecologica Sinica, 2014, 34(5): 1284-1294. |
[ 郭子良, 崔国发. 中国自然保护综合地理区划. 生态学报, 2014, 34(5): 1284-1294.] | |
[23] |
Cheng Weiming, Zhou Chenghu, Li Bingyuan, et al. Geomorphological regionalization theory system and division methodology of China. Acta Geographica Sinica, 2019, 74(5): 839-856.
doi: 10.11821/dlxb201905001 |
[ 程维明, 周成虎, 李炳元, 等. 中国地貌区划理论与分区体系研究. 地理学报, 2019, 74(5): 839-856.]
doi: 10.11821/dlxb201905001 |
|
[24] |
Li Bingyuan, Pan Baotian, Cheng Weiming, et al. Research on geomorphological regionalization of China. Acta Geographica Sinica, 2013, 68(3): 291-306.
doi: 10.11821/xb201303001 |
[ 李炳元, 潘保田, 程维明, 等. 中国地貌区划新论. 地理学报, 2013, 68(3): 291-306.] | |
[25] | Gong Zitong, Chen Zhicheng, Luo Guobao, et al. Reference for soil systematic classification in China. Soils, 1999, 31(2): 57-63. |
[ 龚子同, 陈志诚, 骆国保, 等. 中国土壤系统分类参比. 土壤, 1999, 31(2): 57-63.] | |
[26] | Xi Chengfan, Zhang Junmin. The soil regions of China. Acta Pedologica Sinica, 1982, 19(2): 97-109. |
[ 席承藩, 张俊民. 中国土壤区划的依据与分区. 土壤学报, 1982, 19(2): 97-109.] | |
[27] |
Zheng Jingyun, Yin Yunhe, Li Bingyuan. A new scheme for climate regionalization in China. Acta Geographica Sinica, 2010, 65(1): 3-12.
doi: 10.11821/xb201001002 |
[ 郑景云, 尹云鹤, 李炳元. 中国气候区划新方案. 地理学报, 2010, 65(1): 3-12.] | |
[28] | Qin Aimin, Qian Weihong, Cai Qinbo. Seasonal division and trend characteristic of air temperature in China in the last 41 years. Journal of the Meteorological Sciences, 2005, 25(4): 338-345. |
[ 秦爱民, 钱维宏, 蔡亲波. 1960—2000年中国不同季节的气温分区及趋势. 气象科学, 2005, 25(4): 338-345.] | |
[29] | Zheng Du. Ecogeographical Regional System in China. Beijing: The Commercial Press, 2008. |
[ 郑度. 中国生态地理区域系统研究. 北京: 商务印书馆, 2008.] | |
[30] | Fu Bojie, Liu Guohua, Chen Liding, et al. Scheme of ecological regionalization in China. Acta Ecologica Sinica, 2001, 21(1): 1-6. |
[ 傅伯杰, 刘国华, 陈利顶, 等. 中国生态区划方案. 生态学报, 2001, 21(1): 1-6.] | |
[31] |
Bailey R G. Identifying ecoregion boundaries. Environmental Management, 2004, 34(1): S14-S26.
doi: 10.1007/s00267-003-0163-6 |
[32] | Xiong Yi. Hydrological Regionalization of China. Beijing: Science Press, 1995. |
[ 熊怡. 中国水文区划. 北京: 科学出版社, 1995.] | |
[33] | Zhang Jingyi, He Hui, Lu Guihua. Research on hydrological regionalization. Water Resources and Hydropower Engineering, 2006, 37(1): 48-52. |
[ 张静怡, 何惠, 陆桂华. 水文区划问题研究. 水利水电技术, 2006, 37(1): 48-52.] | |
[34] | Zhang Xingnan, Luo Jian, Chen Lei, et al. Zoning of Chinese flood hazard risk. Journal of Hydraulic Engineering, 2000, 31(3): 1-7. |
[ 张行南, 罗健, 陈雷, 等. 中国洪水灾害危险程度区划. 水利学报, 2000, 31(3): 1-7.] | |
[35] | Wang Nan, Cheng Weiming, Zhang Yichi, et al. Reasons and risk assessment of housing damage in the national mountain torrent disaster prevention county. Journal of Geo-Information Science, 2017, 19(12): 1575-1583. |
[ 王楠, 程维明, 张一驰, 等. 全国山洪灾害防治县房屋损毁风险评估及原因探究. 地球信息科学学报, 2017, 19(12): 1575-1583.]
doi: 10.3724/SP.J.1047.2017.01575 |
|
[36] | Zhou Tinru, Shi Yafeng, Chen Shupeng. Draft of Chinese Topographic Zoning. Beijing: Science Press, 1956. |
[ 周廷儒, 施雅风, 陈述彭. 中国地形区划草案. 北京: 科学出版社, 1956.] | |
[37] | Wang Jing'ai, Zuo Wei. Geographical Atlas of China. Beijing: Sinomap press, 2010. |
[ 王静爱, 左伟. 中国地理图集. 北京: 中国地图出版社, 2010.] | |
[38] | Guo Liang, Zhang Xiaolei, Liu Ronghua, et al. Achievements and preliminary analysis on China national flash flood disasters investigation and evaluation. Journal of Geo-Information Science, 2017, 19(12): 1548-1556. |
[ 郭良, 张晓蕾, 刘荣华, 等. 全国山洪灾害调查评价成果及规律初探. 地球信息科学学报, 2017, 19(12): 1548-1556.]
doi: 10.3724/SP.J.1047.2017.01548 |
|
[39] | Ma Xiufeng. Weight function method for calculating hydrological frequency parameters. Journal of China Hydrology, 1984(3): 1-8. |
[ 马秀峰. 计算水文频率参数的权函数法. 水文, 1984(3): 1-8.] | |
[40] |
Wu W J, Wang J H, Dai T S, et al. The geographical legacies of mountains: Impacts on cultural difference landscapes. Annals of the American Association of Geographers, 2018, 108(1): 277-290.
doi: 10.1080/24694452.2017.1352481 |
[41] |
Kohonen T. The self-organizing map. Proceedings of the IEEE, 1990, 78(9): 1464-1480.
doi: 10.1109/5.58325 |
[42] |
Ward J H. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 1963, 58(301): 236-244.
doi: 10.1080/01621459.1963.10500845 |
[43] |
Arbelaitz O, Gurrutxaga I, Muguerza J, et al. An extensive comparative study of cluster validity indices. Pattern Recognition, 2013, 46(1): 243-256.
doi: 10.1016/j.patcog.2012.07.021 |
[44] |
Davies D L, Bouldin D W. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2): 224-227.
doi: 10.1109/TPAMI.1979.4766909 |
[45] |
Mao Qi, Peng Jian, Liu Yanxu, et al. An ecological function zoning approach coupling SOFM and SVM: A case study in Ordos. Acta Geographica Sinica, 2019, 74(3): 460-474.
doi: 10.11821/dlxb201903005 |
[ 毛祺, 彭建, 刘焱序, 等. 耦合SOFM与SVM的生态功能分区方法: 以鄂尔多斯市为例. 地理学报, 2019, 74(3): 460-474.]
doi: 10.11821/dlxb201903005 |
|
[46] |
Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective. Acta Geographica Sinica, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[ 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[47] |
Yang L, Li X M, Yang Q Y, et al. Extracting knowledge from legacy maps to delineate eco-geographical regions. International Journal of Geographical Information Science, 2021, 35(2): 250-272.
doi: 10.1080/13658816.2020.1806284 |
[1] | 张明羽, 张正勇, 刘琳, 张雪莹, 康紫薇, 陈泓瑾, 高煜, 王统霞, 余凤臣. 中国天山山体效应评估及空间分异归因[J]. 地理学报, 2023, 78(5): 1254-1270. |
[2] | 刘泠岑, 孙中孝, 吴锋, 李玉恒, 张倩. 基于夜间灯光数据的中国县域发展活力与均衡性动态研究[J]. 地理学报, 2023, 78(4): 811-823. |
[3] | 李博, 曲艺. 中国沿海地区产业演化路径依赖及突破对区域经济韧性的影响[J]. 地理学报, 2023, 78(4): 824-839. |
[4] | 孙根年, 幸迪. 2020—2022年COVID-19疫情对中国居民消费及消费结构的影响[J]. 地理学报, 2023, 78(4): 894-912. |
[5] | 郑文升, 熊亚骏, 王晓芳, 黄建武. 中国城市群高铁通达格局与空间交叠特征[J]. 地理学报, 2023, 78(4): 930-936. |
[6] | 程昌秀, 裴韬, 刘瑜, 杜云艳, 沈石, 江净超. 新时代自然灾害态势感知的实践与方法探索[J]. 地理学报, 2023, 78(3): 548-557. |
[7] | 刘小鹏, 冯康利, 卫宇曦, 崔云霞, 蒋春梅. 中国贫困地理研究及其学科范式[J]. 地理学报, 2023, 78(3): 572-586. |
[8] | 徐进勇. 中国潜在造林地及其气候生产潜力空间分布估算[J]. 地理学报, 2023, 78(3): 677-693. |
[9] | 王姣娥, 杜方叶, 肖凡. 新型基础设施的空间布局模式研究——以大型数据中心为例[J]. 地理学报, 2023, 78(2): 259-272. |
[10] | 董世杰, 辛良杰, 李升发, 谢花林, 赵宇鸾, 王学, 李秀彬, 宋恒飞, 卢亚晗. 中国梯田撂荒程度及空间格局分异研究[J]. 地理学报, 2023, 78(1): 3-15. |
[11] | 张百平, 姚永慧, 肖飞, 周文佐, 朱连奇, 张俊华, 赵芳, 白红英, 王晶, 余付勤, 张兴航, 刘俊杰, 李佳宇, 蒋娅. 秦岭中部山地落叶阔叶林超级垂直带的发现与意义[J]. 地理学报, 2022, 77(9): 2236-2248. |
[12] | 张甜, 黄晓燕, 李鹏, 党小虎, 曹小曙, 邓铭江. 西北“水三线”地区生态经济枢纽区基本理论与建设布局[J]. 地理学报, 2022, 77(9): 2154-2173. |
[13] | 刘泽淼, 黄贤金, 卢学鹤, 李升峰, 漆信贤. 共享社会经济路径下中国碳中和路径预测[J]. 地理学报, 2022, 77(9): 2189-2201. |
[14] | 李小建. 中国经济地理思想的历史演变及发展走向[J]. 地理学报, 2022, 77(8): 1873-1891. |
[15] | 龚胜生, 王无为, 杨林生, 柴彦威, 周素红, 黄蕾, 王兰, 程杨, 葛淼, 罗勇军. 地理学参与健康中国建设的重点领域与行动建议[J]. 地理学报, 2022, 77(8): 1851-1872. |