地理学报 ›› 2022, Vol. 77 ›› Issue (9): 2189-2201.doi: 10.11821/dlxb202209004
刘泽淼1(), 黄贤金1,2(
), 卢学鹤3, 李升峰1, 漆信贤1
收稿日期:
2021-11-10
修回日期:
2022-04-29
出版日期:
2022-09-25
发布日期:
2022-11-25
通讯作者:
黄贤金(1968-), 男, 江苏扬中人, 博士, 教授, 研究方向为土地利用与规划、土地经济与政策、资源环境经济学等。E-mail: hxj369@nju.edu.cn作者简介:
刘泽淼(1997-), 男, 山东青岛人, 博士生, 主要从事碳排放效应模拟研究。E-mail: dz1927005@smail.nju.edu.cn
基金资助:
LIU Zemiao1(), HUANG Xianjin1,2(
), LU Xuehe3, LI Shengfeng1, QI Xinxian1
Received:
2021-11-10
Revised:
2022-04-29
Published:
2022-09-25
Online:
2022-11-25
Supported by:
摘要:
科学地预测和分析不同情景下中国碳中和路径有助于碳中和目标的合理推进,但当前研究仍缺少结合碳源—汇变化趋势的综合性分析与应用国际耦合模式情景的系统性分析。本文运用WITCH综合评估模型与IBIS植被动态模型模拟了各共享社会经济路径情景下21世纪中国碳源—汇路径,对中国碳中和时间及路径进行预测分析。研究发现:① 中国碳汇逐年值存在3~4 a的周期性波动。RCP6.0气候情景下中国碳汇总量均值稳定在约0.30 Gt C/a;RCP2.6气候情景下中国碳汇总量均值呈下降趋势,到2065—2100年下降至约0.18 Gt C/a。② 中国碳排放总量受到世界经济社会发展路径与政策强度的共同影响,在中高强度减排政策下中国碳排放均在2025—2030年达峰后呈下降趋势,其中SSP1/SSP4—高强度碳减排政策情景下碳排放在2060年降至约0.30 Gt C/a并实现碳中和目标。③ 基于典型碳中和情景的路径研究,实现碳中和目标应积极促进清洁能源技术进步与应用,推进非电力能源向电力能源转变,推广生物质能源及CCS技术,并积极倡导电动汽车的发展。
刘泽淼, 黄贤金, 卢学鹤, 李升峰, 漆信贤. 共享社会经济路径下中国碳中和路径预测[J]. 地理学报, 2022, 77(9): 2189-2201.
LIU Zemiao, HUANG Xianjin, LU Xuehe, LI Shengfeng, QI Xinxian. China's carbon neutrality path prediction under the shared social economic paths[J]. Acta Geographica Sinica, 2022, 77(9): 2189-2201.
表1
SSP各情景总体说明
情景名称 | 适应挑战难度 | 缓解挑战难度 | SSPs情景下中国发展路径 |
---|---|---|---|
SSP1 | 低 | 低 | 迅速的技术变革、经济全球化促进了经济发展与低碳能源技术发展,具有能源强度低、环保意识强与可再生能源大规模应用的特点。 |
SSP2 | 中 | 中 | 遵循当前经济社会与技术发展趋势路径,内外部条件均偏向折中。 |
SSP3 | 高 | 高 | 缓慢的技术进步、经济逆全球化阻碍了经济发展与低碳能源技术发展,具有能源强度高、传统能源淘汰速度慢的特点。 |
SSP4 | 高 | 低 | 较快的技术变革与经济逆全球化使经济发展速度中等,低碳能源技术发展与应用仍然较快但不及SSP1情景。 |
SSP5 | 低 | 高 | 在经济全球化与人力资本高投资的驱动下经济快速发展,但低碳能源发展速度缓慢,具有能源强度高、传统能源持续大规模应用的特点。 |
[1] | IPCC. Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press, in press. |
[2] | Deng Mingjun, Luo Wenbing, Yin Lijuan. A systematic review of international theory, research and practice on carbon neutrality. Resources Science, 2013, 35(5): 1084-1094. |
[邓明君, 罗文兵, 尹立娟. 国外碳中和理论研究与实践发展述评. 资源科学, 2013, 35(5): 1084-1094.] | |
[3] | Deng Xu, Xie Jun, Teng Fei. What is carbon neutrality? Climate Change Research, 2021, 17(1): 107-113. |
[邓旭, 谢俊, 滕飞. 何谓“碳中和”? 气候变化研究进展, 2021, 17(1): 107-113.] | |
[4] | Davidson M, Karplus V J, Zhang D, et al. Policies and institutions to support carbon neutrality in China by 2060. Economics of Energy & Environmental Policy, 2021, 10(2): 7-24. |
[5] | Wang C, Shi Y, Zhang L, et al. The policy effects and influence mechanism of China's carbon emissions trading scheme. Air Quality, Atmosphere & Health, 2021, 14(12): 2101-2114. |
[6] | Wang Can, Zhang Yaxin. Implementation pathway and policy system of carbon neutrality vision. Chinese Journal of Environmental Management, 2020, 12(6): 58-64. |
[王灿, 张雅欣. 碳中和愿景的实现路径与政策体系. 中国环境管理, 2020, 12(6): 58-64.] | |
[7] | Tang Lanping, Ke Xinli, Zheng Weiwei. Scenario analysis on the impacts of cropland balance of occupation and compensation on carbon storage. Journal of Land Economics, 2020(2): 76-93. |
[唐兰萍, 柯新利, 郑伟伟. 耕地占补平衡对碳储量影响的情景分析. 土地经济研究, 2020(2): 76-93.] | |
[8] |
Li Y N, Lan S, Ryberg M, et al. A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. iScience, 2021, 24(6): 102513. DOI: 10.1016/j.isci.2021.102513.
doi: 10.1016/j.isci.2021.102513 |
[9] | Zhang Zhenye, Hu Shanying, Jin Yong. China achieving carbon neutral in 2060, fossil energy to fossil resource era. Modern Chemical Industry, 2021, 41(6): 1-5. |
[张臻烨, 胡山鹰, 金涌. 2060中国碳中和: 化石能源转向化石资源时代. 现代化工, 2021, 41(6): 1-5.] | |
[10] |
Zhang R S, Hanaoka T. Deployment of electric vehicles in China to meet the carbon neutral target by 2060: Provincial disparities in energy systems, CO2 emissions, and cost effectiveness. Resources, Conservation and Recycling, 2021, 170: 105622. DOI: 10.1016/j.resconrec.2021.105622.
doi: 10.1016/j.resconrec.2021.105622 |
[11] | Sun Xudong, Zhang Leixin, Zhang Bo. Research on the coal industry development and transition in China under the background of carbon neutrality. China Mining Magazine, 2021, 30(2): 1-6. |
[孙旭东, 张蕾欣, 张博. 碳中和背景下我国煤炭行业的发展与转型研究. 中国矿业, 2021, 30(2): 1-6.] | |
[12] | Cheng Ziteng, Shen Yue. Low-carbon economy research under the new urbanization: Taking liuzhou as an example. Journal of Land Economics, 2014(2): 141-150. |
[程子腾, 沈悦. 新型城镇化下柳州市低碳发展研究. 土地经济研究, 2014(2): 141-150.] | |
[13] |
Weng Y W, Cai W J, Wang C. Evaluating the use of BECCS and afforestation under China's carbon-neutral target for 2060. Applied Energy, 2021, 299: 117263. DOI: 10.1016/j.apenergy.2021.117263.
doi: 10.1016/j.apenergy.2021.117263 |
[14] | Hao Xiaodi, Wei Jing, Cao Yali. A successful case of carbon-neutral operation in America: Sheboygan WWTP. China Water & Wastewater, 2014, 30(24): 1-6. |
[郝晓地, 魏静, 曹亚莉. 美国碳中和运行成功案例: Sheboygan污水处理厂. 中国给水排水, 2014, 30(24): 1-6.] | |
[15] | Wang Can, Cong Jianhui, Wang Ke, et al. Research on China's technology lists for addressing climate change. China Population Resources and Environment, 2021, 31(3): 1-12. |
[王灿, 丛建辉, 王克, 等. 中国应对气候变化技术清单研究. 中国人口·资源与环境, 2021, 31(3): 1-12.] | |
[16] | Zhang Xian. The application prospect of CCUS in China under the target of carbon neutrality. China Sustainability Tribune, 2020(12): 22-24. |
[张贤. 碳中和目标下中国碳捕集利用与封存技术应用前景. 可持续发展经济导刊, 2020(12): 22-24.] | |
[17] |
O'Neill B C, Kriegler E, Riahi K, et al. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 2014, 122(3): 387-400.
doi: 10.1007/s10584-013-0905-2 |
[18] |
O'Neill B C, Carter T R, Ebi K, et al. Achievements and needs for the climate change scenario framework. Nature Climate Change, 2020, 10(12): 1074-1084.
doi: 10.1038/s41558-020-00952-0 |
[19] |
Riahi K, van Vuuren D P, Kriegler E, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change: Human and Policy Dimensions, 2017, 42: 153-168.
doi: 10.1016/j.gloenvcha.2016.05.009 |
[20] |
Graham N T, Davies E G R, Hejazi M I, et al. Water sector assumptions for the shared socioeconomic pathways in an integrated modeling framework. Water Resources Research, 2018, 54(9): 6423-6440.
doi: 10.1029/2018WR023452 |
[21] |
Chowdhury S, Dey S, Smith K R. Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nature Communications, 2018, 9: 318. DOI: 10.1038/s41467-017-02755-y.
doi: 10.1038/s41467-017-02755-y |
[22] |
Rosa I M D, Purvis A, Alkemade R, et al. Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Global Ecology and Conservation, 2020, 22: e00886. DOI: 10.1016/j.gecco.2019.e00886.
doi: 10.1016/j.gecco.2019.e00886 |
[23] |
Terama E, Clarke E, Rounsevell M D A, et al. Modelling population structure in the context of urban land use change in Europe. Regional Environmental Change, 2019, 19(3): 667-677.
doi: 10.1007/s10113-017-1194-5 |
[24] |
Hallegatte S, Rozenberg J. Climate change through a poverty lens. Nature Climate Change, 2017, 7(4): 250-256.
doi: 10.1038/nclimate3253 |
[25] | Cai Bofeng, Cao Libin, Lei Yu, et al. China's carbon emission pathway under the carbon neutrality target. China Population Resources and Environment, 2021, 31(1): 7-14. |
[蔡博峰, 曹丽斌, 雷宇, 等. 中国碳中和目标下的二氧化碳排放路径. 中国人口·资源与环境, 2021, 31(1): 7-14.] | |
[26] |
Cheng J, Tong D, Zhang Q, et al. Pathways of China's PM2.5 air quality 2015-2060 in the context of carbon neutrality. National Science Review, 2021, 8(12). DOI: 10.1093/nsr/nwab078.
doi: 10.1093/nsr/nwab078 |
[27] | Yu Biying, Zhao Guangpu, An Runying, et al. Research on China's CO2 emission pathway under carbon neutral target. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(2): 17-24. |
[余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24.] | |
[28] | Zhang Fan, Xu Ning, Wu Feng. Research on China's CO2 missions programs from 2020 to 2100 under the Shared Socioeconomics Pathways. Acta Ecologica Sinica, 2021, 41(24): 9691-9704. |
[张帆, 徐宁, 吴锋. 共享社会经济路径下中国2020—2100年碳排放预测研究. 生态学报, 2021, 41(24): 9691-9704.] | |
[29] |
Cramer W, Bondeau A, Woodward F I, et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 2001, 7(4): 357-373.
doi: 10.1046/j.1365-2486.2001.00383.x |
[30] |
Kucharik C J, Foley J A, Delire C, et al. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 2000, 14(3): 795-825.
doi: 10.1029/1999GB001138 |
[31] |
Foley J A, Prentice I C, Ramankutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 1996, 10(4): 603-628.
doi: 10.1029/96GB02692 |
[32] | Bosetti V, Carraro C, Galeotti M, et al. WITCH: A world induced technical change hybrid model. Energy Journal, 2006(Special Issue 2): 13-37. |
[33] |
Shan Y L, Huang Q, Guan D B, et al. China CO2 emission accounts 2016-2017. Scientific Data, 2020, 7: 54. DOI: 10.1038/s41597-020-0393-y.
doi: 10.1038/s41597-020-0393-y |
[34] |
Jing C, Tao H, Jiang T, et al. Population, urbanization and economic scenarios over the Belt and Road region under the Shared Socioeconomic Pathways. Journal of Geographical Sciences, 2020, 30(1): 68-84.
doi: 10.1007/s11442-020-1715-x |
[35] |
Huang J L, Qin D H, Jiang T, et al. Effect of fertility policy changes on the population structure and economy of China: From the perspective of the shared socioeconomic pathways. Earth's Future, 2019, 7(3): 250-265.
doi: 10.1029/2018EF000964 |
[36] | Hou Xueyu. China 1∶ 4 Million Vegetation Map. Beijing: China Map Publishing House, 1979. |
[侯学煜. 中国1∶400万植被图. 北京: 地图出版社, 1979.] | |
[37] | Liu Julan. 1∶ 1 Million Soil Map of the People's Republic of China. Beijing: China Publishing Yearbook, 1995. |
[刘菊兰. 中华人民共和国1∶100万土壤图. 北京: 中国出版年鉴社, 1995.] | |
[38] |
Ji D, Wang L, Feng J, et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geoscientific Model Development, 2014, 7(5): 2039-2064.
doi: 10.5194/gmd-7-2039-2014 |
[39] | Lu Xuehe. IBIS model simulation of the impact of nitrogen deposition on the carbon budget of global terrestrial ecosystems[D]. Nanjing: Nanjing University, 2014. |
[卢学鹤. 氮沉降对全球陆地生态系统碳收支影响的IBIS模型模拟[D]. 南京: 南京大学, 2014.] | |
[40] |
Huang Xianjin, Zhang Xiuying, Lu Xuehe, et al. Land development and utilization for carbon neutralization. Journal of Natural Resources, 2021, 36(12): 2995-3006.
doi: 10.31497/zrzyxb.20211201 |
[黄贤金, 张秀英, 卢学鹤, 等. 面向碳中和的中国低碳国土开发利用. 自然资源学报, 2021, 36(12): 2995-3006.] | |
[41] | Yu Guirui, Fu Yuling, Sun Xiaomin, et al. Research progress and development ideas of the China Terrestrial Ecosystem Flux Observation and Research Network (ChinaFLUX). Science China Series D: Earth Sciences, 2006, 36(Suppl.1): 1-21. |
[于贵瑞, 伏玉玲, 孙晓敏, 等. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路. 中国科学D辑: 地球科学, 2006, 36(Suppl.1): 1-21.] | |
[42] |
Jiang F, Chen J M, Zhou L, et al. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Scientific Reports, 2016, 6: 22130. DOI: 10.1038/srep22130.
doi: 10.1038/srep22130 pmid: 26924637 |
[43] |
Zhang H F, Chen B Z, van der Laan-Luijkx I T, et al. Net terrestrial CO2 exchange over China during 2001-2010 estimated with an ensemble data assimilation system for atmospheric CO2. Journal of Geophysical Research-Atmospheres, 2014, 119(6): 3500-3515.
doi: 10.1002/2013JD021297 |
[44] |
Wang T, Lin X, Peng S, et al. Multimodel projections and uncertainties of net ecosystem production in China over the twenty-first century. Chinese Science Bulletin, 2014, 59(34): 4681-4691.
doi: 10.1007/s11434-014-0613-y |
[45] |
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 588(7837): 720-723.
doi: 10.1038/d41586-020-03559-9 |
[46] |
Yu L, Gu F X, Huang M, et al. Impacts of 1.5 ℃ and 2 ℃ global warming on net primary productivity and carbon balance in China's terrestrial ecosystems. Sustainability, 2020, 12(7): 2849. DOI: 10.3390/su12072849.
doi: 10.3390/su12072849 |
[47] | Yang Yanzheng, Ma Yuandan, Jiang Hong, et al. Evaluating the carbon budget pattern of Chinese terrestrial ecosystem from 1960 to 2006 using Integrated Biosphere Simulator. Acta Ecologica Sinica, 2016, 36(13): 3911-3922. |
[杨延征, 马元丹, 江洪, 等. 基于IBIS模型的1960—2006年中国陆地生态系统碳收支格局研究. 生态学报, 2016, 36(13): 3911-3922.] | |
[48] |
Bauer N, Calvin K, Emmerling J, et al. Shared socio-economic pathways of the energy sector: Quantifying the narratives. Global Environmental Change: Human and Policy Dimensions, 2017, 42: 316-330.
doi: 10.1016/j.gloenvcha.2016.07.006 |
[49] | Fan Jingli, Li Jia, Yan Shuiping, et al. Application potential analysis for bioenergy carbon capture and storage technology in China. Thermal Power Generation, 2021, 50(1): 7-17. |
[樊静丽, 李佳, 晏水平, 等. 我国生物质能-碳捕集与封存技术应用潜力分析. 热力发电, 2021, 50(1): 7-17.] | |
[50] | Gao Hua. Research on global CCS technology status and application prospect. Coal Economic Research, 2020, 40(5): 33-38. |
[高华. 全球碳捕捉与封存(CCS)技术现状及应用前景. 煤炭经济研究, 2020, 40(5): 33-38.] | |
[51] |
Pietzcker R C, Stetter D, Manger S, et al. Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Applied Energy, 2014, 135: 704-720.
doi: 10.1016/j.apenergy.2014.08.011 |
[52] | Ma Huiling, Chen Dayu. Analysis on current situation and problems of hydropower development in China and the suggestions. Water Power, 2017, 43(12): 76-78. |
[马会领, 陈大宇. 对我国水电发展现状、问题的浅析和建议. 水力发电, 2017, 43(12): 76-78.] | |
[53] | Wu Yun, Yu Biying, Zou Ying, et al. The path of low-carbon transformation in China's power sector under the vision of carbon neutrality. Chinese Journal of Environmental Management, 2021, 13(3): 48-55. |
[吴郧, 余碧莹, 邹颖, 等. 碳中和愿景下电力部门低碳转型路径研究. 中国环境管理, 2021, 13(3): 48-55.] | |
[54] | Wang Qia. Forecast of China's wind power installed capacity and corresponding CO2 reduction from 2020 to 2060. Ecological Economy, 2021, 37(7): 13-21. |
[王恰. 2020—2060年中国风电装机规模及其CO2减排预测. 生态经济, 2021, 37(7): 13-21.] |
[1] | 张甜, 黄晓燕, 李鹏, 党小虎, 曹小曙, 邓铭江. 西北“水三线”地区生态经济枢纽区基本理论与建设布局[J]. 地理学报, 2022, 77(9): 2154-2173. |
[2] | 徐杨, 李秀芬, 葛全胜, 郝志新. 气象干旱对中亚棉花产量的影响[J]. 地理学报, 2022, 77(9): 2338-2352. |
[3] | 张百平, 姚永慧, 肖飞, 周文佐, 朱连奇, 张俊华, 赵芳, 白红英, 王晶, 余付勤, 张兴航, 刘俊杰, 李佳宇, 蒋娅. 秦岭中部山地落叶阔叶林超级垂直带的发现与意义[J]. 地理学报, 2022, 77(9): 2236-2248. |
[4] | 李小建. 中国经济地理思想的历史演变及发展走向[J]. 地理学报, 2022, 77(8): 1873-1891. |
[5] | 龚胜生, 王无为, 杨林生, 柴彦威, 周素红, 黄蕾, 王兰, 程杨, 葛淼, 罗勇军. 地理学参与健康中国建设的重点领域与行动建议[J]. 地理学报, 2022, 77(8): 1851-1872. |
[6] | 王小华, 杨玉琪, 罗新雨, 温涛. 中国经济高质量发展的空间关联网络及其作用机制[J]. 地理学报, 2022, 77(8): 1920-1936. |
[7] | 陈舒婷, 李裕瑞, 潘玮, 王武林, 金凤君. 中国县域陆路交通优势度格局演化及经济效应[J]. 地理学报, 2022, 77(8): 1937-1952. |
[8] | 林志慧, 陈瑛, 刘宪锋, 马耀峰. 中国入境旅游城市合作网络时空格局及驱动因素[J]. 地理学报, 2022, 77(8): 2034-2049. |
[9] | 李晓玲, 刘志高, 谭爽, 修春亮, 贺红士. 中国黑龙江省与俄远东跨境经济合作空间组织模式的演变[J]. 地理学报, 2022, 77(8): 2083-2096. |
[10] | 田浩, 刘琳, 张正勇, 陈泓瑾, 张雪莹, 王统霞, 康紫薇. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729. |
[11] | 蔡伟祥, 徐丽, 李明旭, 孙建新, 何念鹏. 2010—2060年中国森林生态系统固碳速率省际不平衡性及调控策略[J]. 地理学报, 2022, 77(7): 1808-1820. |
[12] | 孙三百, 张青萍, 李冉, 张可云. 中国地区收入与净财富不平等的演变路径识别[J]. 地理学报, 2022, 77(6): 1411-1429. |
[13] | 吴思栩, 孙斌栋, 张婷麟. 互联网对中国城市内部就业分布的动态影响[J]. 地理学报, 2022, 77(6): 1446-1460. |
[14] | 刘云刚, 王韬. 中国政治地理学研究进展评述[J]. 地理学报, 2022, 77(6): 1506-1517. |
[15] | 饶志国, 秦倩倩, 魏士凯, 郭海春, 李云霞. 全新世温度研究回顾及对历史人地关系的启示[J]. 地理学报, 2022, 77(5): 1169-1180. |