[1] |
Anderson R M, May R M. Infectious Diseases of Humans:Dynamics and Control. Oxford: Oxford University Press, 1992.
|
[2] |
Gao P, Zhang H, Wu Z, et al. Visualising the expansion and spread of coronavirus disease 2019 by cartograms. Environment and Planning A, 2020, 52(4): 698-701.
doi: 10.1177/0308518X20910162
|
[3] |
Murano Y, Ueno R, Shi S, et al. Impact of domestic travel restrictions on transmission of COVID-19 infection using public transportation network approach. Scientific Reports, 2021, 11(1): 3109. DOI: 10.1038/s41598-021-81806-3.
doi: 10.1038/s41598-021-81806-3
pmid: 33542248
|
[4] |
Wei Y, Wang J E, Song W, et al. Spread of COVID-19 in China: Analysis from a city-based epidemic and mobility model. Cities, 2021, 110: 103010. DOI: 10.1016/j.cities.2020.103010.
doi: 10.1016/j.cities.2020.103010
|
[5] |
Kitsak M, Lazaros K G, Havlin S, et al. Identification of influential spreaders in complex networks. Nature Physics, 2010, 6: 888-893.
doi: 10.1038/nphys1746
|
[6] |
Chen D B, Lv L Y, Shang M S, et al. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics & Its Applications, 2012, 391: 1777-1787.
|
[7] |
Sun L J, Axhausen W K, Lee D H, et al. Efficient detection of contagious outbreaks in massive metropolitan encounter networks. Scientific Reports, 2014, 4: 5099. DOI: 10.1038/SREP05099.
doi: 10.1038/SREP05099
|
[8] |
Wang Lucang, Liu Haiyang, Liu Qing. China's city network based on Tencent's migration big data. Acta Geographica Sinica, 2021, 76(4): 853-869.
doi: 10.11821/dlxb202104006
|
|
[ 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究. 地理学报, 2021, 76(4): 853-869.]
doi: 10.11821/dlxb202104006
|
[9] |
Wang De, Li Dan, Fu Yingzi. Employment space of residential quarters in Shanghai: An exploration based on mobile signaling data. Acta Geographica Sinica, 2020, 75(8): 1585-1602.
|
|
[ 王德, 李丹, 傅英姿. 基于手机信令数据的上海市不同住宅区居民就业空间研究. 地理学报, 2020, 75(8): 1585-1602.]
doi: 10.11821/dlxb202008003
|
[10] |
Perez L, Dragicevic S. An agent-based approach for modeling dynamics of contagious disease spread. International Journal of Health Geographics, 2009, 8: 50. DOI: 10.1186/1476-072X-8-50.
doi: 10.1186/1476-072X-8-50
|
[11] |
Mao L. Modeling triple-diffusions of infectious diseases, information, and preventive behaviors through a metropolitan social network: An agent-based simulation. Applied Geography, 2014, 50: 31-39.
doi: 10.1016/j.apgeog.2014.02.005
|
[12] |
Cooper I, Mondal A, Antonopoulos G C. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals, 2020, 139: 110057. DOI: 10.1016/j.chaos.2020.110057.
doi: 10.1016/j.chaos.2020.110057
|
[13] |
Liu Yu, Yao Xin, Gong Yongxi, et al. Analytical methods and applications of spatial interactions in the era of big data. Acta Geographica Sinica, 2020, 75(7): 1523-1538.
|
|
[ 刘瑜, 姚欣, 龚咏喜, 等. 大数据时代的空间交互分析方法和应用再论. 地理学报, 2020, 75(7): 1523-1538.]
doi: 10.11821/dlxb202007014
|
[14] |
Tatem J A, Rogers J D, Hay I S. Global transport networks and infectious disease spread. Advances in Parasitology, 2006, 62: 293-343.
pmid: 16647974
|
[15] |
Wang J E, Mo H H, Wang F H, et al. Exploring the network structure and nodal centrality of Chinas air transport network: A complex network approach. Journal of Transport Geography, 2011, 19: 712-721.
doi: 10.1016/j.jtrangeo.2010.08.012
|
[16] |
Salathé M, Kazandjiev M, Lee W J, et al. A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 2010, 107(51): 22020-22025.
|
[17] |
Sun L J, Axhausen K W, Lee D H, et al. Understanding metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences, 2013, 110(4): 13774-13779.
|
[18] |
Mo B C, Feng K R, Shen Y, et al. Modeling epidemic spreading through public transit using time-varying encounter network. Transportation Research Part C, 2021, 122: 102893. DOI: 10.1016/j.trc.2020.102893.
doi: 10.1016/j.trc.2020.102893
|
[19] |
Bota A, Lauren M G, Alireza K. Identifying critical components of a public transit system for outbreak control. Network Spatial Economic, 2017, 17: 1137-1159.
doi: 10.1007/s11067-017-9361-2
|
[20] |
Changruenngam S., Bicout J D, Modchang C. How the individual human mobility spatio‑temporally shapes the disease transmission dynamics. Scientific Reports, 2020, 10: 11325. DOI: 10.1038/s41598-020-68230-9.
doi: 10.1038/s41598-020-68230-9
pmid: 32647225
|
[21] |
Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences, 2004, 101(42): 15124-15129.
|
[22] |
Qian X W, Sun L J, Ukkusuri V S. Scaling of contact networks for epidemic spreading in urban transit systems. Scientific Reports, 2021, 11: 4408. DOI: 10.1038/s41598-021-83878-7.
doi: 10.1038/s41598-021-83878-7
|
[23] |
Liu J G, Ren Z M, Guo Q. Ranking the spreading influence in complex networks. Physica A: Statistical Mechanics & Its Applications, 2013, 392(18): 4154-4159.
|
[24] |
Liu Y, Wei B, Du Y X, et al. Identifying influential spreaders by weight degree centrality in complex networks. Chaos, Solitons and Fractals, 2016, 86: 1-7.
doi: 10.1016/j.chaos.2016.01.030
|
[25] |
Gan T, Li W F, He L H, et al. Intracity pandemic risk evaluation using mobile phone data: The case of Shanghai during COVID-19. International Journal of Geo-Information, 2020, 9(12): 715. DOI: 10.3390/ijgi9120715.
doi: 10.3390/ijgi9120715
|
[26] |
Ma X, Liu C C, Wen H M, et al. Understanding commuting patterns using transit smart card data. Journal of Transport Geography, 2017, 58: 135-145.
doi: 10.1016/j.jtrangeo.2016.12.001
|
[27] |
Wang J E, Du F Y, Huang J, et al. Access to hospitals: Potential vs. observed. Cities, 2020, 100: 102671. DOI: 10.1016/j.cities.2020.102671.
doi: 10.1016/j.cities.2020.102671
|
[28] |
Du F Y, Mao L, Wang J E, et al. Inferring transit-based health seeking patterns from smart card data: A case study in Beijing, China. Health & Place, 2020, 65: 102405. DOI: 10.1016/j.healthplace.2020.102405.
doi: 10.1016/j.healthplace.2020.102405
|
[29] |
Williams M C, Pan D, Decker J, et al. Exhaled SARS-CoV-2 quantified by face-mask sampling in hospitalised patients with COVID-19. Journal of Infection, 2021, 82(6): 253-259.
|
[30] |
Harrichandra A, Ierardi A M, Pavilonis B. An estimation of airborne SARS-CoV-2 infection transmission risk in New York City nail salons. Toxicology and Industrial Health, 2020, 36(9): 634-643.
|
[31] |
Liu Y, Tang M, Zhou T, et al. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Scientific Reports, 2014, 5: 9602. DOI: 10.1038/srep09602.
doi: 10.1038/srep09602
|
[32] |
Girvan M, Newman M E. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 2002, 99: 7821-7826.
|
[33] |
Stegehuis C, Hofstad R, Leeuwaarden J. Epidemic spreading on complex networks with community structures. Scientific Reports, 2016, 6: 29748. DOI: 10.1038/srep29748.
doi: 10.1038/srep29748
pmid: 27440176
|
[34] |
Salathe M, Jones H J. Dynamics and control of diseases in networks with community structure. PLOS Computational Biology, 2009, 6(4): e1000736. DOI: 10.1371/journal.pcbi.1000736.
doi: 10.1371/journal.pcbi.1000736
|
[35] |
Newman E J M, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69: 026113. DOI: 10.1103/PhysRevE.69.026113.
doi: 10.1103/PhysRevE.69.026113
|
[36] |
Blondel D V, Guillaume J, Lambiotte R, et al. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008. DOI: 10.1088/1742-5468/2008/10/P10008.
doi: 10.1088/1742-5468/2008/10/P10008
|
[37] |
Beijing Transport Institute. 2020 Beijing Transport Development Annual Report. 2021. https://www.bjtrc.org.cn/List/index/cid/7.html .
|
|
[ 北京交通发展研究院. 2020年北京市交通发展年度报告. 2021. https://www.bjtrc.org.cn/List/index/cid/7.html .]
|
[38] |
Huang J, Levinson D, Wang J E, et al. Tracking job and housing dynamics with smartcard data. Proceedings of the National Academy of Sciences, 2018, 115(50): 12710-12715.
|