地理学报 ›› 2022, Vol. 77 ›› Issue (5): 1169-1180.doi: 10.11821/dlxb202205009
收稿日期:
2021-11-27
修回日期:
2022-03-15
出版日期:
2022-05-25
发布日期:
2022-07-25
作者简介:
饶志国(1978-), 男, 湖南长沙人, 教授, 主要从事地球化学与全球变化研究。E-mail: raozhg@hunnu.edu.cn
基金资助:
RAO Zhiguo(), QIN Qianqian, WEI Shikai, GUO Haichun, LI Yunxia
Received:
2021-11-27
Revised:
2022-03-15
Published:
2022-05-25
Online:
2022-07-25
Supported by:
摘要:
最新一些研究结果强调了全新世期间的长期增温趋势,综合全球平均海平面、大陆冰盖面积、大气温室气体和太阳辐射证据来看,这比传统观点所认为的全新世期间的长期降温趋势,更具有合理性。回顾历史,结合最新的一些研究进展,发现支持“中全新世大暖期”和“晚全新世降温趋势”的证据存在明显的不确定性,最核心的问题为晚全新世加强的人类活动对代用指标或者证据的强烈扰动,使得其不能准确地反映真实的气候变化过程。鉴于目前全新世温度历史争论的核心关键在于晚全新世,因此有必要加强晚全新世温度变化研究。在人类活动影响较小的地区,或者利用对人类活动不敏感的代用指标开展研究,有望可以获得更可靠的晚全新世温度历史重建结果,为准确认识中华数千年文明的长期温度变化背景,进而理解期间的“人地关系”演化历史,并最终客观认识现今面临的以全球变暖为主要特征的气候环境问题,提供一定的科学基础。
饶志国, 秦倩倩, 魏士凯, 郭海春, 李云霞. 全新世温度研究回顾及对历史人地关系的启示[J]. 地理学报, 2022, 77(5): 1169-1180.
RAO Zhiguo, QIN Qianqian, WEI Shikai, GUO Haichun, LI Yunxia. Holocene temperature history and its significance to studies on historical human-land relationship in China[J]. Acta Geographica Sinica, 2022, 77(5): 1169-1180.
[1] |
Osman M B, Tierney J E, Zhu J, et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature, 2021, 599: 239-244.
doi: 10.1038/s41586-021-03984-4 |
[2] |
Bova S, Rosenthal Y, Liu Z Y, et al. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 2021, 589(7843): 548-553.
doi: 10.1038/s41586-020-03155-x |
[3] | Liu Z Y, Zhu J, Rosenthal Y, et al. The Holocene temperature conundrum. PNAS, 2014, 111: E3501-E3505. |
[4] |
Meyer H, Opel T, Laepple T, et al. Long-term winter warming trend in the Siberian Arctic during the mid-to late Holocene. Nature Geoscience, 2015, 8(2): 122-125.
doi: 10.1038/ngeo2349 |
[5] |
Baker J L, Lachniet M S, Chervyatsova O, et al. Holocene warming in western continental Eurasia driven by glacial retreat and greenhouse forcing. Nature Geoscience, 2017, 10(6): 430-435.
doi: 10.1038/NGEO2953 |
[6] |
Marsicek J, Shuman B N, Bartlein P J, et al. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature, 2018, 554(7690): 92-96.
doi: 10.1038/nature25464 |
[7] |
Rao Z G, Huang C, Xie L H, et al. Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record. Quaternary Science Reviews, 2019, 203: 56-67.
doi: 10.1016/j.quascirev.2018.11.010 |
[8] |
Rao Z G, Shi F X, Li Y X, et al. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from central Asia. Quaternary Science Reviews, 2020, 232: 106217. DOI: 10.1016/j.quascirev.2020.106217.
doi: 10.1016/j.quascirev.2020.106217 |
[9] |
Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11,300 years. Science, 2013, 339(6124): 1198-1201.
doi: 10.1126/science.1228026 pmid: 23471405 |
[10] | Dyke, A S. An outline of North American deglaciation with emphasis on central and northern Canada. Developments in Quaternary Sciences, 2004, 2: 373-424. |
[11] |
Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS, 2014, 111(43): 15296-15303.
doi: 10.1073/pnas.1411762111 pmid: 25313072 |
[12] |
Köhler P, Nehrbass-Ahles C, Schmitt J, et al. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth System Science Data, 2017, 9(1): 363-387.
doi: 10.5194/essd-9-363-2017 |
[13] |
Berger A. Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 1978, 35(12): 2362-2367.
doi: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2 |
[14] | Shi Yafeng, Kong Zhaochen, Wang Sumin, et al. The climatic fluctuation and important events of Holocene Megathermal in China. Science in China: Series B, 1992, 22(12):1300-1308. |
[施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件. 中国科学: B辑, 1992, 22(12): 1300-1308.] | |
[15] | Shi Yafeng, Kong Zhaochen, Wang Sumin, et al. The climate and environment of Holocene Megathermal Maximum in China. Science in China: Series B, 1993, 23(8): 865-873. |
[施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期鼎盛阶段的气候与环境. 中国科学: B辑, 1993, 23(8): 865-873.] | |
[16] |
Sun Q L, Liu Y, Wünnemann B, et al. Climate as a factor for Neolithic cultural collapses approximately 4000 years BP in China. Earth-Science Reviews, 2019, 197: 102915. DOI: 10.1016/j.earscirev.2019.102915.
doi: 10.1016/j.earscirev.2019.102915 |
[17] |
Dong G H, Li R, Lu M X, et al. Evolution of human: Environmental interactions in China from the Late Paleolithic to the Bronze Age. Progress in Physical Geography: Earth and Environment, 2020, 44(2): 233-250.
doi: 10.1177/0309133319876802 |
[18] |
Cheng Z J, Weng C Y, Steinke S, et al. Anthropogenic modification of vegetated landscapes in southern China from 6000 years ago. Nature Geoscience, 2018, 11(12): 939-943.
doi: 10.1038/s41561-018-0250-1 |
[19] |
Li F R, Gaillard M J, Cao X Y, et al. Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover. Earth-Science Reviews, 2020, 203: 103119. DOI: 10.1016/j.earscirev.2020.103119.
doi: 10.1016/j.earscirev.2020.103119 |
[20] |
Chen J X, Shi X F, Liu Y G, et al. Holocene vegetation dynamics in response to climate change and hydrological processes in the Bohai region. Climate of the Past, 2020, 16(6): 2509-2531.
doi: 10.5194/cp-16-2509-2020 |
[21] |
Zheng Z, Ma T, Roberts P, et al. Anthropogenic impacts on Late Holocene land-cover change and floristic biodiversity loss in tropical southeastern Asia. PNAS, 2021, 118(40): e2022210118. DOI: 10.1073/pnas.2022210118.
doi: 10.1073/pnas.2022210118 |
[22] |
Jenny J P, Koirala S, Gregory-Eaves I, et al. Human and climate global-scale imprint on sediment transfer during the Holocene. PNAS, 2019, 116(46): 22972-22976.
doi: 10.1073/pnas.1908179116 |
[23] |
Li Y X, Tian Y P, Guo H C, et al. Complex "human-vegetation-climate" interactions in the Late Holocene and their significance for paleotemperature reconstructions. PNAS, 2020, 117(11): 5568-5570.
doi: 10.1073/pnas.1922325117 |
[24] |
Mottl O, Flantua S G A, Bhatta K P, et al. Global acceleration in rates of vegetation change over the past 18000 years. Science, 2021, 372(6544): 860-864.
doi: 10.1126/science.abg1685 |
[25] |
Teng S N, Xu C, Teng L C, et al. Long-term effects of cultural filtering on megafauna species distributions across China. PNAS, 2020, 117(1): 486-493.
doi: 10.1073/pnas.1909896116 |
[26] |
Liu Q S, Deng C L, Torrent J, et al. Review of recent developments in mineral magnetism of the Chinese loess. Quaternary Science Reviews, 2007, 26(3/4): 368-385.
doi: 10.1016/j.quascirev.2006.08.004 |
[27] | Song Y, Hao Q Z, Ge J Y, et al. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quaternary International, 2014, 334: 119-131. |
[28] |
Hu P X, Liu Q S, Heslop D, et al. Soil moisture balance and magnetic enhancement in loess-paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau. Earth and Planetary Science Letters, 2015, 409: 120-132.
doi: 10.1016/j.epsl.2014.10.035 |
[29] |
Ahmed I A M, Maher B A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. PNAS, 2018, 115(8): 1736-1741.
doi: 10.1073/pnas.1719186115 pmid: 29432151 |
[30] |
Dong Y J, Wu N Q, Li F J, et al. Anthropogenic modification of soil communities in northern China for at least two millennia: Evidence from a quantitative mollusk approach. Quaternary Science Reviews, 2020, 248: 106579. DOI: 10.1016/j.quascirev.2020.106579.
doi: 10.1016/j.quascirev.2020.106579 |
[31] |
Chen H, Wang X Y, Lu H Y, et al. Anthropogenic impacts on Holocene fluvial dynamics in the Chinese Loess Plateau, an evaluation based on landscape evolution modeling. Geomorphology, 2021, 392: 107935. DOI: 10.1016/J.GEOMORPH.2021.107935.
doi: 10.1016/J.GEOMORPH.2021.107935 |
[32] |
Barnett R L, Charman D J, Johns C, et al. Nonlinear landscape and cultural response to sea-level rise. Science Advances, 2020, 6(45): eabb6376. DOI: 10.1126/sciadv.abb6376.
doi: 10.1126/sciadv.abb6376 |
[33] |
Bradley S L, Milne G A, Horton B P, et al. Modelling sea level data from China and Malay-Thailand to estimate Holocene ice-volume equivalent sea level change. Quaternary Science Reviews, 2016, 137: 54-68.
doi: 10.1016/j.quascirev.2016.02.002 |
[34] | Goldsmith Y, Broecker W S, Xu H, et al. Northward extent of East Asian monsoon covaries with intensity on orbital and millennial timescales. PNAS, 2017, 144(8): 1817-1821. |
[35] |
Lan J H, Xu H, Lang Y C, et al. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age. Geology, 2020, 48(4): 307-312.
doi: 10.1130/G46811.1 |
[36] |
Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics, 2013, 51(4): 525-548.
doi: 10.1002/rog.20023 |
[37] |
Shi F X, Rao Z G, Li Y X, et al. Precipitation δ18O recorded by the α-cellulose δ18O of plant residues in surface soils: Evidence from a broad environmental gradient in inland China. Global Biogeochemical Cycles, 2019, 33(11): 1440-1468.
doi: 10.1029/2019GB006418 |
[38] |
Cheng H, Zhang P Z, Spötl C, et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters, 2012, 39: L01705. DOI: 10.1029/2011GL050202.
doi: 10.1029/2011GL050202 |
[39] |
Hou S G, Zhang W B, Pang, H X, et al. Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology. The Cryosphere, 2019, 13(6): 1743-1752.
doi: 10.5194/tc-13-1743-2019 |
[40] |
Thompson L G, Davis M E, Mosley-Thompson E, et al. Tropical ice core records: Evidence for asynchronous glaciation on Milankovitch timescales. Journal of Quaternary Science, 2005, 20(7/8): 723-733.
doi: 10.1002/jqs.972 |
[41] |
Thompson L G, Yao T D, Davis M E, et al. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 1997, 276(5320): 1821-1825.
doi: 10.1126/science.276.5320.1821 |
[42] |
Pang H X, Hou S G, Zhang W B, et al. Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7000 years. Journal of Geophysical Research: Atmospheres, 2020, 125(19): e2020JD032560. DOI: 10.1029/2020JD032560.
doi: 10.1029/2020JD032560 |
[43] | Zhang Ruibo, Yuan Yujiang, Wei Wenshou, et al. Response of stable carbon isotope of Larix sibirica ledeb tree-rings to climate change. Arid Zone Research, 2012, 29(2): 328-334. |
[张瑞波, 袁玉江, 魏文寿, 等. 西伯利亚落叶松树轮稳定碳同位素对气候的响应. 干旱区研究, 2012, 29(2): 328-334.] | |
[44] | Zhang Ruibo, Shang Huaming, Wei Wenshou, et al. Summer temperature history in Altay during the last 160 years recorded by δ13C in tree rings. Desert and Oasis Meteorology, 2014, 8(2): 34-40. |
[张瑞波, 尚华明, 魏文寿, 等. 树轮δ13C记录的阿勒泰地区近160a夏季气温变化. 沙漠与绿洲气象, 2014, 8(2): 34-40.] | |
[45] |
Sidorova O V, Saurer M, Myglan V S, et al. A multi-proxy approach for revealing recent climatic changes in the Russian Altai. Climate Dynamics, 2012, 38(1/2): 175-188.
doi: 10.1007/s00382-010-0989-6 |
[46] |
Shi F X, Rao Z G, Cao J T, et al. Meltwater is the dominant water source controlling α-cellulose δ18O in a vascular-plant-dominated alpine peatland in the Altai Mountains, Central Asia. Journal of Hydrology, 2019, 572: 192-205.
doi: 10.1016/j.jhydrol.2019.02.030 |
[47] |
Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters, 2003, 211: 371-380.
doi: 10.1016/S0012-821X(03)00207-3 |
[48] |
McCarroll D, Loader N J. Stable isotopes in tree rings. Quaternary Science Reviews, 2004, 23(7/8): 771-801.
doi: 10.1016/j.quascirev.2003.06.017 |
[49] | Liu Tungsheng. Demand of Anthropocene study in the new stage of geoscience: In honor of late geologist Huang Jiqing for his innovative spirit. Quaternary Sciences, 2004, 24(4): 369-378. |
[刘东生. 开展“人类世”环境研究,做新时代地学的开拓者: 纪念黄汲清先生的地学创新精神. 第四纪研究, 2004, 24(4): 369-378.] | |
[50] |
Ruddiman W F. The Anthropogenic Greenhouse Era began thousands of years ago. Climate Change, 2003, 61(3): 261-293.
doi: 10.1023/B:CLIM.0000004577.17928.fa |
[51] |
Ruddiman W F, He F, Vavrus S J, et al. The early anthropogenic hypothesis: A review. Quaternary Science Reviews, 2020, 240: 106386. DOI: 10.1016/j.quascirev.2020.106386.
doi: 10.1016/j.quascirev.2020.106386 |
[52] | Ruddiman W F, Fuller D Q, Kutzbach J E, et al. Late Holocene climate: Natural or anthropogenic? Reviews of Geophysics, 2016, 54(1): 93-118. |
[1] | 周雪如, 李育. 千百年尺度祁连山地区干湿变化对暖期的响应[J]. 地理学报, 2022, 77(5): 1138-1152. |
[2] | 王娜, 许清海, 张生瑞, 阳小兰, 王丹丹, 孙沅浩, 王涛. 白洋淀地区晚冰期以来的气候和环境演变[J]. 地理学报, 2022, 77(5): 1195-1210. |
[3] | 匡文慧, 张树文, 杜国明, 颜长珍, 吴世新, 李仁东, 陆灯盛, 潘涛, 宁静, 郭长庆, 董金玮, 包玉海, 迟文峰, 窦银银, 侯亚丽, 尹哲睿, 常丽萍, 杨久春, 谢家丽, 邱娟, 张汉松, 张宇博, 杨仕琪, 萨日盖, 刘纪远. 2015—2020年中国土地利用变化遥感制图及时空特征分析[J]. 地理学报, 2022, 77(5): 1056-1071. |
[4] | 李郇, 许伟攀, 黄耀福, 陈浩辉, 秦小珍, 李颖, 邓明亮, 姜俊浩, 秦雅雯. 基于遥感解译的中国农房空间分布特征分析[J]. 地理学报, 2022, 77(4): 835-851. |
[5] | 王秀伟, 李晓军. 中国乡村旅游重点村的空间特征与影响因素[J]. 地理学报, 2022, 77(4): 900-917. |
[6] | 刘长生, 陈昀, 简玉峰, 董瑞甜. 中国旅游产业发展间接就业带动能力测算及其时空差异[J]. 地理学报, 2022, 77(4): 918-935. |
[7] | 曹湛, 戴靓, 杨宇, 彭震伟. 基于“蜂鸣—管道”模型的中国城市知识合作模式及其对知识产出的影响[J]. 地理学报, 2022, 77(4): 960-975. |
[8] | 张启楠, 张凡凡, 麦强, 伍国勇. 中国粮食生产效率空间溢出网络及提升路径[J]. 地理学报, 2022, 77(4): 996-1008. |
[9] | 宋飏, 刘艳晓, 张瑜, 王士君. 中国手足口病时空分异特征及影响因素[J]. 地理学报, 2022, 77(3): 574-588. |
[10] | 梁鑫源, 金晓斌, 孙瑞, 韩博, 任婕, 周寅康. 多情景粮食安全底线约束下的中国耕地保护弹性空间[J]. 地理学报, 2022, 77(3): 697-713. |
[11] | 杨宇. 中国与全球能源网络的互动逻辑与格局转变[J]. 地理学报, 2022, 77(2): 295-314. |
[12] | 朱晟君, 杨博飞, 刘逸. 经济全球化变革下的世界经济地理与中国角色[J]. 地理学报, 2022, 77(2): 315-330. |
[13] | 刘承良, 闫姗姗. 中国跨国城际技术通道的空间演化及其影响因素[J]. 地理学报, 2022, 77(2): 331-352. |
[14] | 李广东. 全球土地覆被时空变化与中国贡献[J]. 地理学报, 2022, 77(2): 353-368. |
[15] | 叶超, 杨东阳, 赵江南. 中国超大城市户籍人口转化的实证研究[J]. 地理学报, 2022, 77(2): 369-380. |