地理学报 ›› 2022, Vol. 77 ›› Issue (5): 1153-1168.doi: 10.11821/dlxb202205008
李崇巍1,2(), 王志慧2,3(
), 汤秋鸿4, 胡青峰1, 肖培青2, 吕锡芝2,3, 刘杨2
收稿日期:
2021-08-23
修回日期:
2022-03-18
出版日期:
2022-05-25
发布日期:
2022-07-25
通讯作者:
王志慧(1985-), 男, 山西太原人, 博士, 高级工程师, 主要从事水循环与生态环境遥感研究。E-mail: wzh8588@aliyun.com作者简介:
李崇巍(1995-), 男, 黑龙江宝清人, 硕士生, 主要从事水文遥感研究。E-mail: lxy327115054@163.com
基金资助:
LI Chongwei1,2(), WANG Zhihui2,3(
), TANG Qiuhong4, HU Qingfeng1, XIAO Peiqing2, LYU Xizhi2,3, LIU Yang2
Received:
2021-08-23
Revised:
2022-03-18
Published:
2022-05-25
Online:
2022-07-25
Supported by:
摘要:
黄河流域水资源严重短缺,对地表水面积(SWA)开展动态监测有助于明晰地表水资源时空变化规律及其驱动机制。本文基于Google Earth Engine云平台技术,综合利用混合指数规则集、线性斜率、多元线性回归和偏微分分解等方法,揭示了黄河流域SWA的年际变化及其空间分异规律,厘定了降雨、温度、植被叶面积指数、前一年SWA和水利水保措施与人类用水活动等其他因素对SWA的影响量和相对影响率。结果表明:① 地表水体总体识别精度为97%。1986—2019年全流域永久性SWA年际增长速率49.82 km2/a,其中主河道区贡献83.2%,且2001年为SWA变化由减小到增加的转折点;季节性SWA年际减小速率-79.2 km2/a,其中子流域区贡献61.8%。② 除红碱淖SWA呈显著持续减小外,其他主要天然湖泊SWA均较为稳定;6个主河道大型水库中,小浪底和龙羊峡水库SWA增加趋势最为显著;在86个子流域中,50个子流域SWA呈增加趋势,主要分布于流域中下游。③ 非气象要素对SWA的影响均大于气象要素影响作用。降雨对SWA的增加作用最小,温度上升造成中游地区SWA减小,但却导致源区SWA增加。植被叶面积指数增加导致主河道区和子流域区SWA变化斜率分别增加10.12 km2/a和7.26 km2/a。其他因素对子流域区SWA增加呈负作用,这表明子流域内剧烈用水活动对SWA的减小作用大于水利水保措施对SWA的增加作用,但是分布于主河道中的大型梯级水库调蓄功能可显著提升其对主河道区SWA的增加作用。
李崇巍, 王志慧, 汤秋鸿, 胡青峰, 肖培青, 吕锡芝, 刘杨. 1986—2019年黄河流域地表水体动态变化及其影响因素[J]. 地理学报, 2022, 77(5): 1153-1168.
LI Chongwei, WANG Zhihui, TANG Qiuhong, HU Qingfeng, XIAO Peiqing, LYU Xizhi, LIU Yang. Dynamics of surface water area in the Yellow River Basin and its influencing mechanism during 1986-2019 based on Google Earth Engine[J]. Acta Geographica Sinica, 2022, 77(5): 1153-1168.
[1] | Tang Qiuhong, Liu Xingcai, Zhou Yuanyuan, et al. Cascading impacts of Asian water tower change on downstream water systems. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1306-1312. |
[汤秋鸿, 刘星才, 周园园, 等. “亚洲水塔”变化对下游水资源的连锁效应. 中国科学院院刊, 2019, 34(11): 1306-1312.] | |
[2] | Jia Shaofeng, Liang Yuan. Suggestions for strategic allocation of the Yellow River water resources under the new situation. Resources Science, 2020, 42(1): 29-36. |
[贾绍凤, 梁媛. 新形势下黄河流域水资源配置战略调整研究. 资源科学, 2020, 42(1): 29-36.] | |
[3] | Xia Jun, Peng Shaoming, Wang Chao, et al. Impact of climate change on water resources and adaptive management in the Yellow River Basin. Yellow River, 2014, 36(10): 1-4, 15. |
[夏军, 彭少明, 王超, 等. 气候变化对黄河水资源的影响及其适应性管理. 人民黄河, 2014, 36(10): 1-4, 15.] | |
[4] | Liu Changming, Tian Wei, Liu Xiaomang, et al. Analysis and understanding on runoff variation of the Yellow River in recent 100 years. Yellow River, 2019, 41(10): 11-15. |
[刘昌明, 田巍, 刘小莽, 等. 黄河近百年径流量变化分析与认识. 人民黄河, 2019, 41(10): 11-15.] | |
[5] | Ma Zhuguo, Fu Congbin, Zhou Tianjun, et al. Status and ponder of climate and hydrology changes in the Yellow River Basin. Bulletin of Chinese Academy of Sciences, 2020, 35(1): 52-60. |
[马柱国, 符淙斌, 周天军, 等. 黄河流域气候与水文变化的现状及思考. 中国科学院院刊, 2020, 35(1): 52-60.] | |
[6] | Zhang Jianyun, He Ruimin, Qi Jing, et al. A new perspective on water issues in north China. Advances in Water Science, 2013, 24(3): 303-310. |
[张建云, 贺瑞敏, 齐晶, 等. 关于中国北方水资源问题的再认识. 水科学进展, 2013, 24(3): 303-310.] | |
[7] | Xi Jinping. Speech at the forum on ecological protection and quality development in the Yellow River basin. China Water Resources, 2019(20): 1-3. |
[习近平. 在黄河流域生态保护和高质量发展座谈会上的讲话. 中国水利, 2019(20): 1-3.] | |
[8] | Liu Jianbo, Dai Changda. The application of TM image in reservoir situation monitoring. National Remote Sensing Bulletin, 1996(1): 54-58. |
[刘建波, 戴昌达. TM图象在大型水库库情监测管理中的应用. 遥感学报, 1996(1): 54-58.] | |
[9] | Bi Haiyun, Wang Siyuan, Zeng Jiangyuan, et al. Comparison and analysis of several common water extraction methods based on TM image. Remote Sensing Information, 2012, 27(5): 77-82. |
[毕海芸, 王思远, 曾江源, 等. 基于TM影像的几种常用水体提取方法的比较和分析. 遥感信息, 2012, 27(5): 77-82.] | |
[10] | Lu Jiaju, Li Shihong. Improvement of the techniques for distinguishing water bodies from TM data. National Remote Sensing Bulletin, 1992(1): 17-23. |
[陆家驹, 李士鸿. TM资料水体识别技术的改进. 环境遥感, 1992(1): 17-23.] | |
[11] |
McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
doi: 10.1080/01431169608948714 |
[12] | Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI). National Remote Sensing Bulletin, 2005, 9(5): 589-595. |
[徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究. 遥感学报, 2005, 9(5): 589-595.] | |
[13] |
Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 55-72.
doi: 10.1016/j.isprsjprs.2016.03.008 |
[14] |
Khatami R, Mountrakis G, Stehman S V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 2016, 177: 89-100.
doi: 10.1016/j.rse.2016.02.028 |
[15] |
Zou Z H, Dong J W, Menarguez M A, et al. Continued decrease of open surface water body area in Oklahoma during 1984-2015. Science of the Total Environment, 2017, 595: 451-460.
doi: 10.1016/j.scitotenv.2017.03.259 |
[16] |
Zhou Y, Dong J W, Xiao X M, et al. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water, 2017, 9(4): 256. DOI: 10.3390/w9040256.
doi: 10.3390/w9040256 |
[17] |
Zou Z H, Xiao X M, Dong J W, et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. PNAS, 2018, 115(15): 3810-3815.
doi: 10.1073/pnas.1719275115 |
[18] |
Liu X P, Hu G H, Chen Y M, et al. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 2018, 209: 227-239.
doi: 10.1016/j.rse.2018.02.055 |
[19] |
Dong J W, Xiao X M, Menarguez M A, et al. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 2016, 185: 142-154.
doi: 10.1016/j.rse.2016.02.016 |
[20] |
Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes. Nature, 2016, 540(7633): 418-422.
doi: 10.1038/nature20584 |
[21] |
Mueller N, Lewis A, Roberts D, et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 2016, 174: 341-352.
doi: 10.1016/j.rse.2015.11.003 |
[22] |
Zhou Y, Dong J W, Xiao X M, et al. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Science of the Total Environment, 2019, 689: 366-380.
doi: 10.1016/j.scitotenv.2019.06.341 |
[23] |
Wang X X, Xiao X M, Zou Z H, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016. Nature Communications, 2020, 11: 3471. DOI: 10.1038/s41467-020-17103-w.
doi: 10.1038/s41467-020-17103-w |
[24] |
Wang R M, Xia H M, Qin Y C, et al. Dynamic monitoring of surface water area during 1989-2019 in the Hetao Plain using landsat data in google earth engine. Water, 2020, 12(11): 3010. DOI: 10.3390/w12113010.
doi: 10.3390/w12113010 |
[25] |
Liang K, Li Y Z. Changes in lake area in response to climatic forcing in the endorheic Hongjian Lake basin, China. Remote Sensing, 2019, 11(24): 3046. DOI: 10.3390/rs11243046.
doi: 10.3390/rs11243046 |
[26] |
Luo D L, Jin H J, Du H Q, et al. Variation of alpine lakes from 1986 to 2019 in the headwater area of the Yellow River, Tibetan Plateau using Google Earth Engine. Advances in Climate Change Research, 2020, 11(1): 11-21.
doi: 10.1016/j.accre.2020.05.007 |
[27] | Gao Jixi, Wang Yongcai, Hou Peng, et al. Temporal and spatial variation characteristics of land surface water area in the Yellow River Basin in recent 20 years. Journal of Hydraulic Engineering, 2020, 51(9): 1157-1164. |
[高吉喜, 王永财, 侯鹏, 等. 近20年黄河流域陆表水域面积时空变化特征研究. 水利学报, 2020, 51(9): 1157-1164.] | |
[28] | Liu Xiaoyan. Causes of Sharp Decrease in Water and Sediment in Recent Years in the Yellow River. Beijing: Science Press, 2016. |
[刘晓燕. 黄河近年水沙锐减成因. 北京: 科学出版社, 2016.] | |
[29] |
Ju J C, Roy D P, Vermote E, et al. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sensing of Environment, 2012, 122: 175-184.
doi: 10.1016/j.rse.2011.12.025 |
[30] |
Xia H M, Zhao J Y, Qin Y C, et al. Changes in water surface area during 1989-2017 in the Huai River basin using landsat data and google earth engine. Remote Sensing, 2019, 11(15): 1824. DOI: 10.3390/rs11151824.
doi: 10.3390/rs11151824 |
[31] |
Zhu Z, Wang S X, Woodcock C E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images. Remote Sensing of Environment, 2015, 159: 269-277.
doi: 10.1016/j.rse.2014.12.014 |
[32] | Liu Zhihong, McVicar T R, Van Niel T G, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLINN. Meteorological Monthly, 2008, 34(2): 92-100. |
[刘志红, Tim R McVicar, Van Niel T G, 等. 专用气候数据空间插值软件ANUSPLIN及其应用. 气象, 2008, 34(2): 92-100.] | |
[33] |
Zhang X, Liu L Y, Wang Y J, et al. A SPECLib-based operational classification approach: A preliminary test on China land cover mapping at 30 M. International Journal of Applied Earth Observation and Geoinformation, 2018, 71: 83-94.
doi: 10.1016/j.jag.2018.05.006 |
[34] |
Deng X Y, Song C Q, Liu K, et al. Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow River and implications for river discharge alteration. Journal of Hydrology, 2020, 585: 124791. DOI: 10.1016/j.jhydrol.2020.124791.
doi: 10.1016/j.jhydrol.2020.124791 |
[35] |
Wang C, Jia M M, Chen N C, et al. Long-term surface water dynamics analysis based on landsat imagery and the google earth engine platform: A case study in the middle Yangtze River basin. Remote Sensing, 2018, 10(10): 1635. DOI: 10.3390/rs10101635.
doi: 10.3390/rs10101635 |
[36] |
Li Y, Yao N, Chau H W. Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China. Science of the Total Environment, 2017, 592: 680-692.
doi: 10.1016/j.scitotenv.2017.02.196 |
[37] | Liang Chao. Temporal and spatial variation of surface water andits impact on precipitation in the Yellow River basin in recent 18 years[D]. Kaifeng: Henan University, 2020. |
[梁超. 近18年来黄河流域地表水体时空变化与降水影响分析[D]. 开封: 河南大学, 2020.] | |
[38] |
Chen X Z, Liu L Y, Su Y X, et al. Quantitative association between the water yield impacts of forest cover changes and the biophysical effects of forest cover on temperatures. Journal of Hydrology, 2021, 600: 126529. DOI: 10.1016/j.jhydrol.2021.126529.
doi: 10.1016/j.jhydrol.2021.126529 |
[39] |
Zhou G Y, Sun G, Wang X, et al. Estimating forest ecosystem evapotranspiration at multiple temporal scales with a dimension analysis approach. JAWRA Journal of the American Water Resources Association, 2008, 44(1): 208-221.
doi: 10.1111/j.1752-1688.2007.00148.x |
[40] |
Wang S, Fu B J, He C S, et al. A comparative analysis of forest cover and catchment water yield relationships in Northern China. Forest Ecology and Management, 2011, 262(7): 1189-1198.
doi: 10.1016/j.foreco.2011.06.013 |
[41] |
Ji L, Duan K Q. What is the main driving force of hydrological cycle variations in the semiarid and semi-humid Weihe River Basin, China? Science of the Total Environment, 2019, 684: 254-264.
doi: 10.1016/j.scitotenv.2019.05.333 |
[42] |
Tong S Q, Li X Q, Zhang J Q, et al. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017. Science of the Total Environment, 2019, 649: 75-89.
doi: 10.1016/j.scitotenv.2018.08.262 |
[1] | 张天鹏, 保万魁, 雷秋良, 刘笑彤, 杜新忠, 周脚根, 罗加法, 刘宏斌. 1951—2010年中国土壤温度时空变化特征及其影响因素[J]. 地理学报, 2022, 77(3): 589-602. |
[2] | 张仪辉, 刘昌明, 梁康, 吕锦心. 雅鲁藏布江流域降水时空变化特征[J]. 地理学报, 2022, 77(3): 603-618. |
[3] | 穆学青, 郭向阳, 明庆忠, 胡程. 黄河流域旅游生态安全的动态演变特征及驱动因素[J]. 地理学报, 2022, 77(3): 714-735. |
[4] | 柯文前, 朱宇, 陈晨, Guy J. Abel, 林李月, 林洁. 1995—2015年中国人口迁移的时空变化特征[J]. 地理学报, 2022, 77(2): 411-425. |
[5] | 邓楚雄, 赵浩, 谢炳庚, 李忠武, 李科. 土地资源错配对中国城市工业绿色全要素生产率的影响[J]. 地理学报, 2021, 76(8): 1865-1881. |
[6] | 高吉喜, 刘晓曼, 王超, 王勇, 付卓, 侯鹏, 吕娜. 中国重要生态空间生态用地变化与保护成效评估[J]. 地理学报, 2021, 76(7): 1708-1721. |
[7] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[8] | 岳书平, 闫业超, 张树文, 杨久春, 王文娟. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779. |
[9] | 蔡佩汝, 汪侠, 闫艺涵, 张颖. 中国儿童多维贫困时空格局变化及其影响因素[J]. 地理学报, 2021, 76(10): 2551-2567. |
[10] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[11] | 马春玥, 买买提·沙吾提, 姚杰, 古丽努尔·依沙克. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710. |
[12] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[13] | 宋小青, 申雅静, 王雄, 李心怡. 耕地利用转型中的生物灾害脆弱性研究[J]. 地理学报, 2020, 75(11): 2362-2379. |
[14] | 阮宏威,于静洁. 1992-2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7): 1292-1304. |
[15] | 吴宜进,赵行双,奚悦,刘慧,李畅. 基于MODIS的2006-2016年西藏生态质量综合评价及其时空变化[J]. 地理学报, 2019, 74(7): 1438-1449. |