地理学报 ›› 2022, Vol. 77 ›› Issue (3): 650-664.doi: 10.11821/dlxb202203011
马立1(), 王璟煦1, 张迪迪1, 王明珠1, 宋玉彪1, 曾辉2(
)
收稿日期:
2021-06-15
修回日期:
2021-12-02
出版日期:
2022-03-25
发布日期:
2022-05-25
通讯作者:
曾辉(1964-), 男, 辽宁凤城人, 教授, 博士生导师, 研究方向为景观与区域生态风险评估。E-mail: zengh@pkusz.edu.cn作者简介:
马立(1982-), 男, 河北邯郸人, 博士, 讲师, 研究方向为空间分析与建模。E-mail: mali@hebeu.edu.cn
基金资助:
MA Li1(), WANG Jingxu1, ZHANG Didi1, WANG Mingzhu1, SONG Yubiao1, ZENG Hui2(
)
Received:
2021-06-15
Revised:
2021-12-02
Published:
2022-03-25
Online:
2022-05-25
Supported by:
摘要:
化石能源(FF)CO2排放是全球人为温室气体排放的主体,作为衔接国家排放清单和大气反演验证途径的关键环节,2019年联合国政府间气候变化专门委员会(IPCC)对《国家温室气体清单指南》进行修订,势必将推动高分辨率FFCO2排放清单的进一步规范发展。本文结合修订版指南中对于高分辨率排放清单的具体要求,从全球尺度、国家及以下尺度两个层面对高时空分辨率FFCO2排放清单的构建方法进行梳理和归纳,并对其研究趋势进行展望。① IPCC方法学的进一步修订与完善,将有助于进一步提高FFCO2排放清单的时空分辨率和精度;而构建包含间接排放的高分辨率FFCO2排放清单正在兴起。② 作为大气反演模型的先验数据,采用自下而上的部门方法,直接获取排放统计数据,是编制高分辨率FFCO2排放清单的首要途径;而通过替代变量及建模途径进行排放总量的时空分配,也是编制高分辨率FFCO2排放清单的必要手段。③ 清单的不确定性分析中,需要考虑时空分配所带来的不确定性信息;基于大气观测的反演验证途径将作为独立于排放清单的一种客观核算手段,将在清单的质量保证/质量控制与验证中发挥重要作用。
马立, 王璟煦, 张迪迪, 王明珠, 宋玉彪, 曾辉. 高时空分辨率FFCO2排放清单的构建方法及研究展望[J]. 地理学报, 2022, 77(3): 650-664.
MA Li, WANG Jingxu, ZHANG Didi, WANG Mingzhu, SONG Yubiao, ZENG Hui. Developing FFCO2 emission inventory with high spatio-temporal resolution: Methodology and prospects[J]. Acta Geographica Sinica, 2022, 77(3): 650-664.
表1
全球尺度高分辨率FFCO2排放清单数据库汇总
清单数据库 | 构建方法 | 气体种类 | 统计年份 | 空间分辨率 | 时间分辨率 |
---|---|---|---|---|---|
EDGAR[ | 部门方法 | CO2、大气污染物 | 1970—2018年 | 0.1°×0.1° | 年、月 |
GCP-GridFED[ | 部门方法 | CO2、O2 | 1959—2019年 | 0.1°×0.1° | 年、月 |
CEDS[ | 部门方法 | CO2、大气污染物 | 1750—2014年 | 0.5°×0.5° | 年、月 |
PKU-FUEL[ | 部门方法 | CO2、大气污染物 | 1960—2014年 | 0.1°×0.1° | 年、月 |
ODIAC[ | 降尺度 | CO2 | 2000—2019年 | 1 km×1 km | 年、月 |
CDIAC[ | 降尺度 | CO2 | 1751—2016年 | 1°×1° | 年、月 |
FFDAS[ | 降尺度 | CO2 | 1997—2010年 | 0.1°×0.1° | 年 |
[1] | IPCC. Special Report on Global Warming of 1.5 °C. Geneva, 2018. https://www.ipcc.ch/sr15/. |
[2] | WMO. State of the Global Climate 2020 Provisional Report. 2020 https://library.wmo.int/doc_num.php?explnum_id=10444. |
[3] | UNEP. The Emissions Gap Report 2020. Nairobi, 2020. https://wedocs.unep.org/20.500.11822/34467. |
[4] | IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html. |
[5] |
Basu S, Lehman S J, Miller J B, et al. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. PNAS, 2020, 117(24). DOI: 10.1073/pnas.1919032117.
doi: 10.1073/pnas.1919032117 |
[6] |
Wang Y, Broquet G, Bréon F, et al. PMIF V1.0: An inversion system to estimate the potential of satellite observations to monitor fossil fuel CO2 emissions over the globe. Geoscientific Model Development, 2020, 13: 5813-5831.
doi: 10.5194/gmd-13-5813-2020 |
[7] | Oda T, Maksyutov S. A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmospheric Chemistry and Physics, 2011, 11: 543-556. |
[8] |
Gurney K R, Razlivanov I, Song Y, et al. Quantification of fossil fuel CO2 emissions on the building/street scale for a large US city. Environmental Science Technology, 2012, 46(21): 12194-12202.
doi: 10.1021/es3011282 |
[9] |
Ghosh T, Elvidge C D, Sutton P C, et al. Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery. Energies, 2010, 3(12): 1895-1913.
doi: 10.3390/en3121895 |
[10] |
Ou J, Liu X, Li X, et al. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO2 emissions: A comparison with DMSP-OLS nighttime light Data. PLOS ONE, 2015, 10(9). DOI: 10.1371/journal.pone.0138310.
doi: 10.1371/journal.pone.0138310 |
[11] |
Marland G, Rotty R M, Treat N L. CO2 from fossil fuel burning: Global distribution of emissions. Tellus B: Chemical and Physical Meteorology, 1985, 37(4/5): 243-258.
doi: 10.3402/tellusb.v37i4-5.15028 |
[12] |
Andres R J, Marland G, Fung I, et al. A 1°× 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990. Global Biogeochemical Cycles, 1996, 10(3): 419-429.
doi: 10.1029/96GB01523 |
[13] | Olivier J, Bouwman A F, Maas C, et al. Description of EDGAR version 2. 1996. https://www.researchgate.net/publication/243770021_Description_of_EDGAR_version_2. (2021-06-10). |
[14] | Janssens-Maenhout G, Crippa M, Guizzardi D, et al. HTAP V2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 2015, 15: 11411-11432. |
[15] |
Doll C N H, Muller J P, Elvidge C D, et al. Night-time imagery as a tool for global mapping of socioeconomic parameters and greenhouse gas emissions. AMBIO, 2000, 29(3): 157-162.
doi: 10.1579/0044-7447-29.3.157 |
[16] |
Rayner P J, Raupach M R, Paget M, et al. A new global gridded data set of CO2 emissions from fossil fuel combustion: Methodology and evaluation. Journal of Geophysical Research: Atmospheres, 2010, 115(D19). DOI: 10.1029/2009JD013439.
doi: 10.1029/2009JD013439 |
[17] |
Ou J, Liu X, Li X, et al. Mapping global fossil fuel combustion CO2 emissions at high resolution by integrating nightlight, population density, and traffic network data. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 2016, 9(4): 1674-1684.
doi: 10.1109/JSTARS.4609443 |
[18] |
Oda T, Maksyutov S, Andres R J. The open-source data inventory for anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth System Science Data, 2018, 10: 87-107.
doi: 10.5194/essd-10-87-2018 |
[19] |
Jones M W, Andrew R M, Peters G P, et al. Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959-2018. Scientific Data, 2021, 8. DOI: 10.1038/s41597-020-00779-613.
doi: 10.1038/s41597-020-00779-613 |
[20] |
Feng L Y, Smith S J, Braun C, et al. The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 2020, 13(2): 461-482.
doi: 10.5194/gmd-13-461-2020 |
[21] |
Chen H, Huang Y, Shen H Z, et al. Modeling temporal variations in global residential energy consumption and pollutant emissions. Applied Energy, 2016, 184: 820-829.
doi: 10.1016/j.apenergy.2015.10.185 |
[22] |
Nassar R, Napier-Linton L, Gurney K R, et al. Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. Journal of Geophysical Research: Atmospheres, 2013, 118(2): 917-933.
doi: 10.1029/2012JD018196 |
[23] |
Andres R J, Gregg J S, Losey L, et al. Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B: Chemical and Physical Meteorology, 2011, 63(3): 309-327.
doi: 10.1111/j.1600-0889.2011.00530.x |
[24] |
Crippa M, Solazzo E, Huang G, et al. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific Data, 2020, 7. DOI: 10.1038/s41597-020-0462-2.
doi: 10.1038/s41597-020-0462-2 |
[25] | EDGAR. Emissions Data and Maps. https://edgar.jrc.ec.europa.eu/emissions_data_and_maps. (2021-06-10). |
[26] |
Hoesly R M, Smith S J, Feng L Y, et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development, 2018, 11(1): 369-408.
doi: 10.5194/gmd-11-369-2018 |
[27] | PKU-FUEL. Use of the Inventories. http://inventory.pku.edu.cn/download/download.html. (2021-06-10). |
[28] | ODIAC. Fossil fuel emission dataset. https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2020.html (2021-06-10). |
[29] | CDIAC. Annual Fossil-Fuel CO2 Emissions: Mass of emissions gridded by one degree latitude by one degree longitude. https://cdiac.ess-dive.lbl.gov/epubs/ndp/ndp058/ndp058_v2016.html (2021-06-10). |
[30] |
Shi K F, Chen Y, Yu B L, et al. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis. Applied Energy, 2016, 168: 523-533.
doi: 10.1016/j.apenergy.2015.11.055 |
[31] | Wang R, Tao S, Ciais P, et al. High-resolution mapping of combustion processes and implications for CO2 emissions. Atmospheric Chemistry and Physics, 2013, 13(10): 5189-5203. |
[32] |
Gurney K R, Mendoza D L, Zhou Y Y, et al. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environmental Science Technology, 2009, 43(14): 5535-5541.
doi: 10.1021/es900806c |
[33] |
Saide P, Zah R, Osses M, et al. Spatial disaggregation of traffic emission inventories in large cities using simplified top-down methods. Atmospheric Environment, 2009, 43(32): 4914-4923.
doi: 10.1016/j.atmosenv.2009.07.013 |
[34] |
Shu Q, Lam N S N. Spatial disaggregation of carbon dioxide emissions from road traffic based on multiple linear regression model. Atmospheric Environment, 2011, 45(3): 634-640.
doi: 10.1016/j.atmosenv.2010.10.037 |
[35] |
Brondfield M N, Hutyra L R, Gately C K, et al. Modeling and validation of on-road CO2 emissions inventories at the urban regional scale. Environmental Pollution, 2012, 170: 113-123.
doi: 10.1016/j.envpol.2012.06.003 pmid: 22776716 |
[36] |
Ryu B Y, Jung H J, Bae S H, et al. Estimation of carbon dioxide emissions per urban center link unit using data collected by the advanced traffic information system in Daejeon, Korea. Atmospheric Environment, 2013, 81: 433-442.
doi: 10.1016/j.atmosenv.2013.09.027 |
[37] |
Nejadkoorki F, Nicholson K, Lake I, et al. An approach for modelling CO2 emissions from road traffic in urban areas. Science of the Total Environment, 2008, 406(1/2): 269-278.
doi: 10.1016/j.scitotenv.2008.07.055 |
[38] | Niu Tianlin. Development of high-resolution road vehicle emission inventory for Nanjing based on intelligent transportation big data[D]. Beijing: Tsinghua University, 2017. |
[牛天林. 基于智能交通大数据的南京高分辨率路网排放清单研究[D]. 北京: 清华大学, 2017.] | |
[39] |
Kannari A, Tonooka Y, Baba T, et al. Development of multiple-species 1 km×1 km resolution hourly basis emissions inventory for Japan. Atmospheric Environment, 2007, 41(16): 3428-3439.
doi: 10.1016/j.atmosenv.2006.12.015 |
[40] |
D'Angiola A, Dawidowski L E, Gómez D R, et al. On-road traffic emissions in a megacity. Atmospheric Environment, 2010, 44(4): 483-493.
doi: 10.1016/j.atmosenv.2009.11.004 |
[41] |
Hall D L, Anderson D C, Martin C R, et al. Using near-road observations of CO, NOx, and CO2 to investigate emissions from vehicles: Evidence for an impact of ambient temperature and specific humidity. Atmospheric Environment, 2020, 232. DOI: 10.1016/j.atmosenv.2020.117558.
doi: 10.1016/j.atmosenv.2020.117558 |
[42] |
Kara M, Mangir N, Bayram A, et al. A spatially high resolution and activity based emissions inventory for the metropolitan area of Istanbul, Turkey. Aerosol Air Quality Research, 2014, 14(1): 10-20.
doi: 10.4209/aaqr.2013.04.0124 |
[43] |
Righi S, Farina F, Marinello S, et al. Development and evaluation of emission disaggregation models for the spatial distribution of non-industrial combustion atmospheric pollutants. Atmospheric Environment, 2013, 79: 85-92.
doi: 10.1016/j.atmosenv.2013.06.021 |
[44] | Vandeweghe J, Kennedy C. A spatial analysis of residential greenhouse gas emissions in the Toronto Census Metropolitan area. Journal of Industrial Ecology, 2007, 11(2): 133-144. |
[45] |
Cai B F, Zhang L X. Urban CO2 emissions in China: Spatial boundary and performance comparison. Energy Policy, 2014, 66: 557-567.
doi: 10.1016/j.enpol.2013.10.072 |
[46] | Xu Sheng. Carbon accounting and space distribution for the cities in China: A case of Nanjing City[D]. Nanjing: Nanjing University, 2011. |
[许盛. 南京市温室气体排放清单及其空间分布研究[D]. 南京: 南京大学, 2011.] | |
[47] | Zhou Y D, Zhao Y, Mao P, et al. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China. Atmospheric Chemistry and Physics, 2017, 17(1): 211-233. |
[48] | Yang Jing. A study on refining temporal and spatial allocation for the 2012-based air pollutant emission inventory in the Pearl River Delta region[D]. Guangzhou: South China University of Technology, 2015. |
[杨静. 珠江三角洲2012年大气排放源清单建立与时空分配改进研究[D]. 广州: 华南理工大学, 2015.] | |
[49] | IEA. CO2 Emissions from fuel combustion highlights. 2021. https://www.iea.org/data-and-statistics/data-product/co2-emissions-from-fuel-combustion-highlights. |
[50] |
Gregg J S, Losey L M, Andres R J, et al. The temporal and spatial distribution of carbon dioxide emissions from fossil-fuel use in North America. Journal of Applied Meteorology and Climatology, 2009, 48(12): 2528-2542.
doi: 10.1175/2009JAMC2115.1 |
[51] |
Xue Y F, Tian H Z, Yan J, et al. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China. Environmental Pollution, 2016, 213(1): 717-726.
doi: 10.1016/j.envpol.2016.03.047 |
[52] |
Sowden M, Cairncross E, Wilson G, et al. Developing a spatially and temporally resolved emission inventory for photochemical modeling in the City of Cape Town and assessing its uncertainty. Atmospheric Environment, 2008, 42(30): 7155-7164.
doi: 10.1016/j.atmosenv.2008.05.048 |
[53] |
Kumar M K, Shiva Nagendra S M. Quantification of anthropogenic CO2 emissions in a tropical urban environment. Atmospheric Environment, 2016, 125: 272-282.
doi: 10.1016/j.atmosenv.2015.11.024 |
[54] |
Ma L, Cai B F, Wu F, et al. Hourly disaggregation of industrial CO2 emissions from Shenzhen, China. Environmental Pollution, 2018, 236: 396-404.
doi: 10.1016/j.envpol.2018.01.090 |
[55] |
Zheng B, Geng G N, Ciais P, et al. Satellite-based estimates of decline and rebound in China's CO2 emissions during COVID-19 pandemic. Science Advances, 2020, 6(49). DOI: 10.1126/sciadv.abd4998.
doi: 10.1126/sciadv.abd4998 |
[56] |
Yang Y, Qu S, Cai B, et al. Mapping global carbon footprint in China. Nature Communications, 2020, 11. DOI: 10.1038/s41467-020-15883-9.
doi: 10.1038/s41467-020-15883-9 |
[57] |
Shen G F, Ainiwaer S, Zhu Y Q, et al. Quantifying source contributions for indoor CO2 and gas pollutants based on the highly resolved sensor data. Environmental Pollution, 2020, 267. DOI: 10.1016/j.envpol.2020.115493.
doi: 10.1016/j.envpol.2020.115493 |
[58] |
Liu X P, Ou J P, Chen Y M, et al. Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures. Applied Energy, 2019, 238: 1163-1178.
doi: 10.1016/j.apenergy.2019.01.173 |
[59] | Su Yongxian, Chen Xiuzhi, Ye Yuyao, et al. The characteristics and mechanisms of carbon emissions from energy consumption in China using DMSP/OLS night light imageries. Acta Geographica Sinica, 2013, 68(11): 1513-1526. |
[苏泳娴, 陈修治, 叶玉瑶, 等. 基于夜间灯光数据的中国能源消费碳排放特征及机理. 地理学报, 2013, 68(11): 1513-1526.] | |
[60] |
Wang Shaojian, Gao Shuang, Huang Yongyuan, et al. Spatio-temporal evolution and trend prediction of urban carbon emission performance in China based on super-efficiency SBM model. Acta Geographica Sinica, 2020, 75(6): 1316-1330.
doi: 10.11821/dlxb202006016 |
[王少剑, 高爽, 黄永源, 等. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测. 地理学报. 2020, 75(6): 1316-1330.] | |
[61] |
Cai B F, Wang J N, He J, et al. Evaluating CO2 emission performance in China's cement industry: An enterprise perspective. Applied Energy, 2016, 166: 191-200.
doi: 10.1016/j.apenergy.2015.11.006 |
[62] |
Wang Guixin, Li Gang. Effect of "Ecological Province" construction on carbon emission reduction in China. Acta Geographica Sinica, 2020, 75(11): 2431-2442.
doi: 10.11821/dlxb202011012 |
[王桂新, 李刚. 生态省建设的碳减排效应研究. 地理学报, 2020, 75(11): 2431-2442.] | |
[63] | MEIC. MEIC emission inventory. http://meicmodel.org/?page_id=541&lang=en (2021-06-10). |
[64] | CHRED. 10km Grid Dataset. http://www.cityghg.com/plus/list.php?tid=22 (2021-06-10). |
[65] |
Tessum C W, Marshall J D, Hill J D. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States. Environmental Science Technology, 2012, 46(20): 11408-11417.
doi: 10.1021/es3010514 |
[66] |
Pan Jinghu, Zhang Yongnian. Spatiotemporal patterns of energy carbon footprint and decoupling effect in China. Acta Geographica Sinica, 2021, 76(1): 206-222.
doi: 10.11821/dlxb202101016 |
[潘竟虎, 张永年. 中国能源碳足迹时空格局演化及脱钩效应. 地理学报, 2021, 76(1): 206-222.] | |
[67] |
Gurney K R, Liang J, Patarasuk R, et al. The Vulcan Version 3.0 high-resolution fossil fuel CO2 emissions for the United States. Journal of Geophysical Research: Atmospheres, 2020, 125(19). DOI: 10.1029/2020JD032974.
doi: 10.1029/2020JD032974 |
[68] | Gately C K, Hutyra L R. Large uncertainties in urban-scale carbon emissions. Journal of Geophysical Research: Atmospheres, 2017, 122(20): 11242-11260. |
[69] | Ma Zhongyu, Xiao Hongwei. Spatiotemporal simulation study of China's provincial carbon emissions based on satellite night lighting data. China Population, Resources and Environment, 2017, 27(9): 143-150. |
[马忠玉, 肖宏伟. 基于卫星夜间灯光数据的中国分省碳排放时空模拟. 中国人口·资源与环境, 2017, 27(9): 143-150.] | |
[70] | FCCC. United Nations Framework Convention on Climate Change. 1992. https://unfccc.int/. |
[71] | Andres R J, Boden T A, Higdon D M. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example. Atmospheric Chemistry and Physics, 2016, 16(23): 14979-14995. |
[72] |
Hogue S, Marland E, Andres R J, et al. Uncertainty in gridded CO2 emissions estimates. Earth's Future, 2016, 4(5): 225-239.
doi: 10.1002/eft2.2016.4.issue-5 |
[73] | Hu Heming, Wang Chi, Zhang Jintao. International research overview of inversion approach of carbon emission measurement in urban area. Acta Metrologica Sinica, 2017, 38(1): 7-12. |
[胡鹤鸣, 王池, 张金涛. 城市区域碳排放测量反演研究国际进展. 计量学报, 2017, 38(1): 7-12.] | |
[74] | Wang Y, Broquet G, Ciais P, et al. Potential of European 14CO2 observation network to estimate the fossil fuel CO2 emissions via atmospheric inversions. Atmospheric Chemistry and Physics, 2018, 18(6): 4229-4250. |
[75] | Konovalov I B, Berezin E V, Ciais P, et al. Estimation of fossil-fuel CO2 emissions using satellite measurements of "proxy" species. Atmospheric Chemistry and Physics, 2016, 16(21): 13509-13540. |
[76] | Liu Yi, Wang Jing, Che Ke, et al. Satellite remote sensing of greenhouse gases: Progress and trends. National Remote Sensing Bulletin, 2021, 25(1): 53-64. |
[刘毅, 王婧, 车轲, 等. 温室气体的卫星遥感: 进展与趋势. 遥感学报, 2021, 25(1): 53-64.] | |
[77] |
Yang D, Boesch H, Liu Y, et al. Toward high precision XCO2 retrievals from tansat observations: Retrieval improvement and validation against TCCON measurements. Journal of Geophysical Research: Atmospheres, 2020, 125(22). DOI: 10.1029/2020JD032794.
doi: 10.1029/2020JD032794 |
[78] | Ren Ge, Zhang Liang, Lin Hong, et al. Research on the monitoring and measurement of greenhouse gas and air pollutant emissions. Measurement Technique, 2020(5): 79-84. |
[任歌, 张亮, 林鸿, 等. 温室气体和大气污染物排放量监测与计量研究. 计量技术, 2020(5): 79-84.] | |
[79] | Chen Caocao, Cai Bofeng, Sun Fen, et al. Spatial agglomeration effects of carbon dioxide emissions between Beijing-Tianjin-Hebei region and Yangtze River Delta region. China Environmental Science, 2017, 37(11): 4371-4379. |
[陈操操, 蔡博峰, 孙粉, 等. 京津冀与长三角城市群碳排放的空间聚集效应比较. 中国环境科学, 2017, 37(11): 4371-4379.] | |
[80] | Liu Hanchu, Fan Jie, Zeng Yuxi, et al. Spatio-temporal differences in carbon intensity in high-energy-intensive industry and its influence factors in China. Acta Ecologica Sinica, 2019, 39(22): 8357-8369. |
[刘汉初, 樊杰, 曾瑜皙, 等. 中国高耗能产业碳排放强度的时空差异及其影响因素. 生态学报, 2019, 39(22): 8357-8369.] | |
[81] | Pan Jinghu, Zhao Xuanru. Spatial difference simulation of China's carbon emissions using spatial regression models. Acta Scientiae Circumstantiae, 2018, 38(7): 2894-2901. |
[潘竟虎, 赵轩茹. 基于空间回归模型的中国碳排放空间差异模拟. 环境科学学报, 2018, 38(7): 2894-2901.] | |
[82] | Ju Weimin, Tian Xiangjun, Jiang Fei, et al. Achievements of study on the global carbon assimilation system based on multisource remote sensing data. China Basic Science, 2019, 21(3): 24-27, 35. |
[居为民, 田向军, 江飞, 等. 基于多源卫星遥感的高分辨率全球碳同化系统研究进展. 中国基础科学, 2019, 21(3): 24-27, 35.] | |
[83] |
Kiel M, Eldering A, Roten D D, et al. Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity. Remote Sensing of Environment, 2021, 258. DOI: 10.1016/j.rse.2021.112314.
doi: 10.1016/j.rse.2021.112314 |
[1] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[2] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[3] | 王少剑, 谢紫寒, 王泽宏. 中国县域碳排放的时空演变及影响因素[J]. 地理学报, 2021, 76(12): 3103-3118. |
[4] | 赵荣钦, 余娇, 肖连刚, 孙锦, 罗慧丽, 杨文娟, 揣小伟, 焦士兴. 基于“水—能—碳”关联的城市水系统碳排放研究[J]. 地理学报, 2021, 76(12): 3119-3134. |
[5] | 胡胜, 邱海军, 王宁练, 崔一飞, 曹明明, 王家鼎, 王新刚. 地形对黄土高原滑坡的影响[J]. 地理学报, 2021, 76(11): 2697-2709. |
[6] | 赵雪雁, 马平易, 李文青, 杜昱璇. 黄土高原生态系统服务供需关系的时空变化[J]. 地理学报, 2021, 76(11): 2780-2796. |
[7] | 崔耀平, 李楠, 付一鸣, 陈良雨. 中美俄加陆域碳汇对人为增温的消减贡献[J]. 地理学报, 2021, 76(1): 167-177. |
[8] | 潘竟虎, 张永年. 中国能源碳足迹时空格局演化及脱钩效应[J]. 地理学报, 2021, 76(1): 206-222. |
[9] | 周侃, 李会, 申玉铭. 京津冀地区县域环境胁迫时空格局及驱动因素[J]. 地理学报, 2020, 75(9): 1934-1947. |
[10] | 宋周莺, 祝巧玲. 中国边境地区的城镇化格局及其驱动力[J]. 地理学报, 2020, 75(8): 1603-1616. |
[11] | 温庆志, 孙鹏, 张强, 姚蕊. 非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J]. 地理学报, 2020, 75(7): 1465-1482. |
[12] | 王少剑, 高爽, 黄永源, 史晨怡. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报, 2020, 75(6): 1316-1330. |
[13] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[14] | 熊俊楠,李进,程维明,周成虎,郭良,张晓蕾,王楠,李伟. 西南地区山洪灾害时空分布特征及其影响因素[J]. 地理学报, 2019, 74(7): 1374-1391. |
[15] | 隆院男,闫世雄,蒋昌波,吴长山,李志威,唐蓉. 基于多源遥感影像的洞庭湖地形提取方法[J]. 地理学报, 2019, 74(7): 1467-1481. |