地理学报 ›› 2022, Vol. 77 ›› Issue (3): 619-634.doi: 10.11821/dlxb202203009
收稿日期:
2021-06-02
修回日期:
2021-12-30
出版日期:
2022-03-25
发布日期:
2022-05-25
作者简介:
余国安(1978-), 男, 安徽怀宁人, 博士, 副研究员, 研究方向为泥沙运动、河流地貌及灾害。E-mail: yuga@igsnrr.ac.cn
基金资助:
YU Guoan1(), LU Jianying1,2, LI Zhiwei3, HOU Weipeng1,2
Received:
2021-06-02
Revised:
2021-12-30
Published:
2022-03-25
Online:
2022-05-25
Supported by:
摘要:
高海拔或高纬度山区(尤其高山冰川及冻土急剧消退区)常孕育适宜泥石流发育的地形和物源条件。气候变化(如升温、强降雨事件增多等)影响下,高山区潜在孕灾环境更易于成灾,泥石流成为主要的灾害类型和物质输移方式,也是高山区地貌变化的重要驱动力。由于野外监测困难,数据资料匮乏,鲜有针对高山区泥石流过程地貌效应的分析报道。以中国藏东南高山区泥石流多发的帕隆藏布流域为研究区,以古乡沟、天摩沟和扎木弄沟为典型小流域,结合遥感影像、DEM数据、无人机航拍、高精度RTK测量和野外踏勘调查,分析泥石流沟道地貌发育特征(冲淤变化、平面摆动)及其对主河河流地貌的影响,并探讨大规模泥石流事件影响下河谷地貌的长期演变趋势。高山区泥石流过程强烈塑造沟道自身地貌,上游物源区深切展宽和溯源蚀退,沟口堆积扇冲淤变化受控于泥石流事件规模和水流强度。泥石流过程显著影响主河道河流地貌,造成主河道横向冲淤和摆动,并影响堰塞体上游河段平面形态发育。长时间尺度上,河谷地貌在平面上发育形成宽窄相间的藕节状而在纵剖面上形成台阶状形态。
余国安, 鲁建莹, 李志威, 侯伟鹏. 气候变化影响下藏东南帕隆藏布流域高山区泥石流的地貌效应[J]. 地理学报, 2022, 77(3): 619-634.
YU Guoan, LU Jianying, LI Zhiwei, HOU Weipeng. Geomorphic effects of debris flows in high mountain areas of the Parlung Zangbo basin, southeast Tibet under the influence of climate change[J]. Acta Geographica Sinica, 2022, 77(3): 619-634.
表1
古乡沟、天摩沟、扎木弄沟基本特征及典型泥石流事件
流域面积(km2) | 主沟长度(km) | 高程 (m) | 平均纵坡(%) | 泥石流暴发 时间 | 泥石流规模(106 m3) | 成因 | 参考 文献 | |
---|---|---|---|---|---|---|---|---|
古乡沟 | 25.2 | 8.7 | 6298~2530 | 25.6 | 1953.09.29 | 11 | 1950年地震引发滑坡堵塞沟谷上游形成堰塞体;1953年降雨和升温造成堰塞体溃决 | [ |
1975 | / | 冰崩 | [ | |||||
2005.07.30—08.06 | 0.3~0.4 | 升温及强降雨引发冰崩滑坡 | [ | |||||
2020.07 | / | 降雨 | 本文 | |||||
天摩沟 | 17.8 | 7.1 | 5560~ 2460 | 27.2 | 2007.09.04 | ~1.0 | 升温和降雨引发冰崩/岩崩/滑坡 | [ |
2010.07.25 | 0.1~0.5 | 强降雨和升温引发崩滑堵塞沟道,后溃决 | [ | |||||
2010.09.03 | 0.1~0.5 | 降雨升温 | [ | |||||
2018.07.11 | 0.18 | 升温及降雨引发岩崩 | [ | |||||
扎木弄沟 | 29.4 | 9.7 | 5616~ 2186 | 27.7 | 1900 | 510 | 前期降雨和升温 | [ |
2000.04.09 | 280~300 | 升温和降雨引起滑坡 | [ | |||||
2015.08 | 0.06 | 降雨 | [ | |||||
2020.07 | 0.01~0.1 | 降雨 | 本文 |
[1] |
Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2012, 2: 663-667.
doi: 10.1038/nclimate1580 |
[2] |
Zemp M, Haeberli W, Hoelzle M, et al. Alpine glaciers to disappear within decades? Geophysical Research Letters, 2006, 33: L13504. DOI: 10.1029/2006GL026319.
doi: 10.1029/2006GL026319 |
[3] |
Quincey D J, Glasser N F. Morphological and ice-dynamical changes on the Tasman Glacier, New Zealand, 1990-2007. Global and Planetary Change, 2009, 68(3): 185-197.
doi: 10.1016/j.gloplacha.2009.05.003 |
[4] |
Evans S G, Bishop N F, Fidel Smoll L, et al. A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. Engineering Geology, 2009, 108(1/2): 96-118.
doi: 10.1016/j.enggeo.2009.06.020 |
[5] |
Haeberli W, Huggel C, Kääb A, et al. The Kolka-Karmadon rock/ice slide of 20 September 2002: An extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. Journal of Glaciology, 2004, 50(171): 533-546.
doi: 10.3189/172756504781829710 |
[6] | Guthrie R H, Friele P, Allstadt K, et al. The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: Characteristics, dynamics, and implications for hazard and risk assessment. Natural Hazards and Earth System Sciences, 2012, 12(5): 1277-1294. |
[7] |
Walter F, Amann F, Kos A, et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology, 2020, 351: 106933. DOI: 10.1016/j.geomorph.2019.106933.
doi: 10.1016/j.geomorph.2019.106933 |
[8] |
Stock J, Dietrich W E. Valley incision by debris flows: Evidence of a topographic signature. Water Resources Research, 2003, 39(4): 1089. DOI: 10.1029/2001WR001057.
doi: 10.1029/2001WR001057 |
[9] |
Gabet E J, Bookter A. A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA. Geomorphology, 2008, 96(3-4): 298-309.
doi: 10.1016/j.geomorph.2007.03.016 |
[10] |
Procter J, Cronin S J, Fuller I C, et al. Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand. Geology, 2010, 38(1): 67-70.
doi: 10.1130/G30129.1 |
[11] |
Wei Xueli, Chen Ningsheng. Development of debris flows in Guanba River and its effect on sediment deposition in Qionghai Lake of Sichuan. Acta Geographica Sinica, 2018, 73(1): 81-91.
doi: 10.11821/dlxb201801007 |
[魏学利, 陈宁生. 官坝河泥石流发育特征及对四川邛海的泥沙淤积效应. 地理学报, 2018, 73(1): 81-91.] | |
[12] |
de Haas T, Nijland W, de Jong S M, et al. How memory effects, check dams, and channel geometry control erosion and deposition by debris flows. Scientific Reports, 2020, 10: 14024. DOI: 10.1038/s41598-020-71016-8.
doi: 10.1038/s41598-020-71016-8 pmid: 32820204 |
[13] |
Schürch P, Densmore A L, Rosser N J, et al. Dynamic controls on erosion and deposition on debris-flow fans. Geology, 2011, 39(9): 827-830.
doi: 10.1130/G32103.1 |
[14] | Shu Anping, Zhang Xin, Tang Chuan, et al. Analysis on the deposition processes and characteristics of non-homogeneous debris flow. Journal of Hydraulic Engineering, 2013, 44(11): 1333-1337, 1346. |
[舒安平, 张欣, 唐川, 等. 不同坡度条件下非均质泥石流堆积过程与特征. 水利学报, 2013, 44(11): 1333-1337, 1346.] | |
[15] |
Theule J I, Liébault F, Laigle D, et al. Channel scour and fill by debris flows and bedload transport. Geomorphology, 2015, 243: 92-105.
doi: 10.1016/j.geomorph.2015.05.003 |
[16] |
de Haas T, Woerkom T. Bed scour by debris flows: Experimental investigation of effects of debris-flow composition. Earth Surface Processes and Landforms, 2016, 41: 1951-1966.
doi: 10.1002/esp.v41.13 |
[17] |
Whipple K X, Dunne T. The influence of debris-flow rheology on fan morphology, Owens Valley, California. Geological Society of America Bulletin, 1992, 104(7): 887-900.
doi: 10.1130/0016-7606(1992)104<0887:TIODFR>2.3.CO;2 |
[18] | Jiang Zhongxin. Model of minimum energy dissipation in evolution of valley longitudinal profile of debris flow in Southeast Tibet area. Scientia Geographica Sinica, 2003, 23(1): 25-31. |
[蒋忠信. 藏东南泥石流沟纵剖面演化的最小功模式. 地理科学, 2003, 23(1): 25-31.] | |
[19] |
Iverson R M. Elementary theory of bed-sediment entrainment by debris flows and avalanches. Journal of Geophysical Research: Earth Surface, 2012, 117: F03006. DOI: 10.1029/2011JF002189.
doi: 10.1029/2011JF002189 |
[20] |
Lyu L Q, Wang Z Y, Cui P, et al. The role of bank erosion on the initiation and motion of gully debris flows. Geomorphology, 2017, 285: 137-151.
doi: 10.1016/j.geomorph.2017.02.008 |
[21] |
Liang Xinyue, Xu Mengzhen, Lyu Liqun, et al. Geomorphological characteristics of debris flow gullies on the edge of the Qinghai-Tibet Plateau. Acta Geographica Sinica, 2020, 75(7): 1373-1385.
doi: 10.11821/dlxb202007004 |
[梁馨月, 徐梦珍, 吕立群, 等. 基于地貌特征的青藏高原边缘泥石流沟分类. 地理学报, 2020, 75(7): 1373-1385.] | |
[22] | Cui Peng, He Yiping, Chen Jie. Debris flow sediment transportation and its effects on rivers in mountain area. Journal of Mountain Science, 2006, 24(5): 539-549. |
[崔鹏, 何易平, 陈杰. 泥石流输沙及其对山区河道的影响. 山地学报, 2006, 24(5): 539-549.] | |
[23] |
Breien H, de Blasio F V, Elverhøi A, et al. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides, 2008, 5(3): 271-280.
doi: 10.1007/s10346-008-0118-3 |
[24] |
Decaulne A, Saemundsson T. Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology, 2006, 80: 80-93.
doi: 10.1016/j.geomorph.2005.09.007 |
[25] | Tibetan Plateau Scientific Expedition Team of Chinese Academy of Sciences. Rivers and Lakes in Tibet. Beijing: Science Press, 1984. |
[中国科学院青藏高原综合科学考察队. 西藏河流与湖泊. 北京: 科学出版社, 1984.] | |
[26] | Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources of China, Institute of the Traffic Science, Tibet Autonomous Region. A Study of Typical Mountain Hazards along Sichuan-Tibet Highway. Chengdu: Chengdu Science and Technology University Publishing House, 1999. |
[中国科学院成都山地灾害与环境研究所, 西藏自治区交通科学研究所. 川藏公路典型山地灾害研究. 成都: 成都科技大学出版社, 1999.] | |
[27] | Mountaineering and Scientific Expedition Team of Chinese Academy of Sciences. Geology of the Namcha Barwa Aera. Beijing: Science Press, 1992. |
[中国科学院登山科学考察队. 南迦巴瓦峰地区地质. 北京: 科学出版社, 1992.] | |
[28] | Tibetan Plateau Scientific Expedition Team of Chinese Academy of Sciences. Glaciers in Tibet. Beijing: Science Press, 1986. |
[中国科学院综合科学考察队. 西藏冰川. 北京: 科学出版社, 1986.] | |
[29] | Shang Yanjun, Yang Zhifa, Yuan Guangxiang, et al. Development and Distribution of Geo-hazards along the Sichuan-Tibet Highway Adjacent to the Northern Side of the Yarlu Tsangpo Grand Canyon in Tibet, China. Beijing: China Railway Press, 2010. |
[尚彦军, 杨志法, 袁广祥, 等. 雅鲁藏布江大拐弯北部川藏公路地质灾害发育与分布研究. 北京: 中国铁道出版社, 2010.] | |
[30] | Yang Wei, Yao Tandong, Xu Baiqing, et al. Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chinese Science Bulletin, 2010, 55(18): 1775-1780. |
[杨威, 姚檀栋, 徐柏青, 等. 近期藏东南帕隆藏布流域冰川的变化特征. 科学通报, 2010, 55(18): 1775-1780.] | |
[31] | Lu Jianying, Yu Guoan, Huang Heqing. Research and prospect on formation mechanism of debris flows in high mountains under the influence of climate change. Journal of Glaciology and Geocryology, 2021, 43(2): 555-567. |
[鲁建莹, 余国安, 黄河清. 气候变化影响下高山区泥石流形成机制研究及展望. 冰川冻土, 2021, 43(2): 555-567.] | |
[32] |
Egozi R, Ashmore P. Defining and measuring braiding intensity. Earth Surface Processes and Landforms, 2008, 33: 2121-2138.
doi: 10.1002/esp.1658 |
[33] | Zhu Pingyi, Luo Defu, Kou Yuzhen. Debris flow development trend of Guxiang ravine, Xizang. Journal of Mountain Research, 1997, 15(4): 296-299. |
[朱平一, 罗德富, 寇玉贞. 西藏古乡沟泥石流发展趋势. 山地研究, 1997, 15(4): 296-299.] | |
[34] | Hu Kaiheng, Cui Peng, You Yong, et al. Influence of debris supply on the activity of post-quake debris flows. The Chinese Journal of Geological Hazard and Control, 2011, 22(1): 1-6. |
[胡凯衡, 崔鹏, 游勇, 等. 物源条件对震后泥石流发展影响的初步分析. 中国地质灾害与防治学报, 2011, 22(1): 1-6.] | |
[35] | Liu Jiankang, Cheng Zunlan. Meteorology conditions for frequent debris flows from Guxiang valley in Tibet, China. Science Technology and Engineering, 2015, 15(9): 45-49, 55. |
[刘建康, 程尊兰. 西藏古乡沟泥石流与气象条件的关系. 科学技术与工程, 2015, 15(9): 45-49, 55.] | |
[36] | Lu Anxin, Deng Xiaofeng, Zhao Shangxue, et al. Cause of debris flow in Guxiang valley in Bomi, Tibet Autonomous Region, 2005. Journal of Glaciology and Geocryology, 2006, 28(6): 956-960. |
[鲁安新, 邓晓峰, 赵尚学, 等. 2005年西藏波密古乡沟泥石流暴发成因分析. 冰川冻土, 2006, 28(6): 956-960.] | |
[37] |
Wei R Q, Zeng Q L, Davies T, et al. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Engineering Geology, 2018, 233: 172-182.
doi: 10.1016/j.enggeo.2017.12.013 |
[38] | Deng M F, Chen N S, Liu M. Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo Valley, south-eastern Tibetan Plateau. Natural Hazards and Earth System Sciences, 2017, 17(3): 345-356. |
[39] | Gao Bo, Zhang Jiajia, Wang Junchao, et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet. Hydrogeology and Engineering Geology, 2019, 46(5): 144-153. |
[高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征. 水文地质工程地质, 2019, 46(5): 144-153.] | |
[40] | Li Jun, Chen Ningsheng, Ouyang Chaojun, et al. Volume of loose materials and the analysis of possibility of blocking and dam break triggered by debris flows in Zhamunonggou. Journal of Catastrophology, 2017, 32(1): 80-84, 116. |
[李俊, 陈宁生, 欧阳朝军, 等. 扎木弄沟滑坡型泥石流物源及堵河溃坝可能性分析. 灾害学, 2017, 32(1): 80-84, 116.] | |
[41] | Zhu Pingyi, Wang Chenghua, Tang Bangxing. The deposition characteristic of supper debris flow in Tibet. Journal of Mountain Research, 2000, 18(5): 453-456. |
[朱平一, 王成华, 唐邦兴. 西藏特大规模碎屑流堆积特征. 山地学报, 2000, 18(5): 453-456.] | |
[42] | Yin Yueping. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet. Hydrogeology and Engineering Geology, 2000, 27(4): 8-11. |
[殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 2000, 27(4): 8-11.] | |
[43] |
Shang Y J, Yang Z F, Li L H, et al. A super-large landslide in Tibet in 2000: Background, occurrence, disaster, and origin. Geomorphology, 2003, 54: 225-243.
doi: 10.1016/S0169-555X(02)00358-6 |
[44] | Wang Weiyu, Li Jun, Zhao Yuandi. Study on the relationship between rainfall frequency and mudslide outbreak frequency: Taking the mudslides in Zhamunonggou, Tibet, in August 2015 as an example. Journal of Gansu Sciences, 2020, 32(1): 60-65. |
[王伟宇, 李俊, 赵苑迪. 降雨频率与泥石流暴发频率关系研究: 以2015年8月西藏扎木弄沟泥石流为例. 甘肃科学学报, 2020, 32(1): 60-65.] | |
[45] |
Yu G A, Lu J Y, Lyu L Q, et al. Mass flows and river response in rapid uplifting regions: A case of lower Yarlung Tsangpo basin, southeast Tibet, China. International Journal of Sediment Research, 2020, 35(6): 609-620.
doi: 10.1016/j.ijsrc.2020.05.006 |
[46] | Li Bingyuan, Pan Baotian. Progress in paleogeographic study of the Tibetan Plateau. Geographical Research, 2002, 21(1): 61-70. |
[李炳元, 潘保田. 青藏高原古地理环境研究. 地理研究, 2002, 21(1): 61-70.] |
[1] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[2] | 胡凯衡, 魏丽, 刘双, 李秀珍. 横断山区泥石流空间格局和激发雨量分异性研究[J]. 地理学报, 2019, 74(11): 2303-2313. |
[3] | 薛兴华,常胜,宋鄂平. 三峡水库蓄水后荆江洲滩变化特征[J]. 地理学报, 2018, 73(9): 1714-1727. |
[4] | 魏学利,陈宁生. 官坝河泥石流发育特征及对四川邛海的泥沙淤积效应[J]. 地理学报, 2018, 73(1): 81-91. |
[5] | 崔颖颖, 朱立平, 鞠建廷, 罗伦, 王永杰. 基于流量监测的西藏东南部然乌湖水量平衡季节变化及其补给过程分析[J]. 地理学报, 2017, 72(7): 1221-1234. |
[6] | 李泳, 陈晓清, 胡凯衡, 何淑芬. 泥石流颗粒组成的分形特征[J]. 地理学报, 2005, 60(3): 495-502. |
[7] | 何易平,马东涛,崔鹏,陈瑞. 西藏中尼公路沿线的泥石流[J]. 地理学报, 2002, 57(3): 275-283. |
[8] | 唐川,朱静. 澜沧江中下游滑坡泥石流分布规律与危险区划[J]. 地理学报, 1999, 54(s1): 84-92. |
[9] | 王治华. 金沙江下游的滑坡和泥石流[J]. 地理学报, 1999, 54(2): 142-149. |
[10] | 倪晋仁, 王光谦. 泥石流的结构两相流模型:I.理论[J]. 地理学报, 1998, 53(1): 66-76. |
[11] | 倪晋仁, 王光谦, 熊育武, 张军, 康志成. 泥石流的结构两相流模型:Ⅱ.应用[J]. 地理学报, 1998, 53(1): 77-85. |
[12] | 李焯芬, 陈虹. 香港滑坡泥石流成因及治理[J]. 地理学报, 1997, 52(s1): 114-121. |
[13] | 杨大庆, 张寅生, 张志忠 . 乌鲁木齐河源雪密度观测研究 [J]. 地理学报, 1992, 47(3): 260-266. |
[14] | 唐邦兴, 吴积善 . 山地自然灾害(以泥石流为主)及其防治 [J]. 地理学报, 1990, 45(2): 202-209. |
[15] | 丁永建. 山区小流域洪水过程中泥沙搬运方式的初步研究[J]. 地理学报, 1989, 44(4): 487-495. |