地理学报 ›› 2022, Vol. 77 ›› Issue (2): 426-442.doi: 10.11821/dlxb202202011
收稿日期:
2020-10-09
修回日期:
2021-06-09
出版日期:
2022-02-25
发布日期:
2022-04-25
通讯作者:
王士君(1963-), 男, 黑龙江延寿人, 博士, 教授, 博士生导师, 主要从事经济地理学和城市地理学研究。E-mail: wangsj@nenu.edu.cn作者简介:
赵梓渝(1986-), 男, 吉林长春人, 博士, 讲师, 硕士生导师, 研究方向为城市网络与人口流动。E-mail: 171462539@qq.com
基金资助:
ZHAO Ziyu1(), HAN Zhonghui2, WEI Ye3, WANG Shijun3(
)
Received:
2020-10-09
Revised:
2021-06-09
Published:
2022-02-25
Online:
2022-04-25
Supported by:
摘要:
中国政府通过历史罕见的人口流动管控遏制新型冠状病毒肺炎(COVID-19)疫情爆发。人口流动管控措施对于疫情防控起到何种作用?又如何影响中国人口流动和短期分布的地理特征?本文通过SEIR病毒传播动力学模型评估管控措施的有效性,利用移动定位数据追踪中国人口流动时空变化,以回顾COVID-19重大疫情人口流动管控的正负效应:① 人口流动管控使COVID-19疫情日新增感染曲线显著平稳化,成为中国应对COVID-19疫情重大突发性公共卫生事件时非药物干预措施的重要组成部分。人口流动管控使中国日新增感染者波峰日推迟1.9倍到达,当日感染人数下降63.4%。在选取的5个省份、5个湖北省城市、6个湖北外城市中,波峰日分别推迟1.4~8倍、5.6~16.7倍和2.3~7.2倍到达,当日感染人数分别下降56.9%~85.5%、62.2%~89.2%和67.1%~86.2%。因此,人口流动管控为疫情防控准备争取了宝贵的缓冲时间,极大降低了疫情集中爆发对于医疗设施的冲击;② 人口流动管控限制人口地级流动。2020年1—4月中国人口地级行政区划之间流动强度较2019年同期日均下降40.18%,其中,2020年“春运”节后返工流(1月25日—2月18日)平均下降66.4%,对社会运行与经济发展产生重大影响;③ 人口流动管控与人们对于疫情的恐惧导致2020年中国农历春节的返乡流受到显著影响,并短期改变中国人口时空分布的动态趋势。本文有助于理解重大突发性公共卫生事件下政府人口流动管控策略及其对人口流动与分布地理特征的影响。
赵梓渝, 韩钟辉, 魏冶, 王士君. 中国人口流动管控应对COVID-19疫情效应评估[J]. 地理学报, 2022, 77(2): 426-442.
ZHAO Ziyu, HAN Zhonghui, WEI Ye, WANG Shijun. Effect of population flow control in restraining COVID-19 in China[J]. Acta Geographica Sinica, 2022, 77(2): 426-442.
表4
新增传染人数波峰到达天数与当日感染人数模拟
分组 | 单元 | 新增传染人数峰值到达天数(d) | 新增传染人数峰值(万人) | ||||||
---|---|---|---|---|---|---|---|---|---|
管控 | 不管控 | 差值 | 倍数 | 管控 | 不管控 | 差值 | 百分比(%) | ||
全国 | 全国 | 60 | 21 | 39 | 1.9 | 13660 | 37367 | -23707 | -63.4 |
重点省份 | 湖北 | 54 | 6 | 48 | 8.0 | 541 | 3729 | -3188 | -85.5 |
广东 | 39 | 16 | 23 | 1.4 | 1507 | 3497 | -1990 | -56.9 | |
河南 | 42 | 12 | 30 | 2.5 | 1159 | 3649 | -2490 | -68.2 | |
浙江 | 40 | 9 | 31 | 3.4 | 719 | 2410 | -1691 | -70.2 | |
湖南 | 43 | 18 | 25 | 1.4 | 799 | 1867 | -1069 | -57.2 | |
湖北城市 | 武汉 | 53 | 3 | 50 | 16.7 | 93 | 863 | -770 | -89.2 |
孝感 | 30 | 4 | 26 | 6.5 | 73 | 297 | -224 | -75.4 | |
黄冈 | 31 | 4 | 27 | 6.8 | 105 | 392 | -287 | -73.2 | |
荆州 | 33 | 5 | 28 | 5.6 | 81 | 419 | -338 | -80.6 | |
鄂州 | 39 | 3 | 36 | 12.0 | 10 | 26 | -16 | -62.2 | |
重点城市 | 北京 | 52 | 12 | 40 | 3.3 | 188 | 766 | -578 | -75.5 |
重庆 | 50 | 15 | 35 | 2.3 | 293 | 944 | -651 | -69.0 | |
上海 | 53 | 15 | 38 | 2.5 | 209 | 727 | -518 | -71.3 | |
深圳 | 46 | 14 | 32 | 2.3 | 129 | 391 | -262 | -67.1 | |
广州 | 49 | 14 | 35 | 2.5 | 139 | 474 | -334 | -70.6 | |
温州 | 49 | 6 | 43 | 7.2 | 82 | 595 | -513 | -86.2 |
[1] |
Wang L, Wu J T. Characterizing the dynamics underlying global spread of epidemics. Nature Communications, 2018, 9: 218. DOI: 10.1038/s41467-017-02344-z.
doi: 10.1038/s41467-017-02344-z pmid: 29335536 |
[2] |
Massaro E, Ganin A, Perra N, et al. Resilience management during large-scale epidemic outbreaks. Scientific Reports, 2018, 8(1): 1859. DOI: 10.1038/s41598-018-19706-2.
doi: 10.1038/s41598-018-19706-2 |
[3] |
Liu Weidong. The impacts of COVID-19 pandemic on the development of economic globalization. Geographical Research, 2020, 39(7): 1439-1449.
doi: 10.11821/dlyj020200514 |
[ 刘卫东. 新冠肺炎疫情对经济全球化的影响分析. 地理研究, 2020, 39(7): 1439-1449.] | |
[4] |
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 2020, 382(13): 1199-1207.
doi: 10.1056/NEJMoa2001316 |
[5] |
Yang Y, Lu Q B, Liu M J, et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. Med Rxiv, 2020. DOI: 10.1101/2020.02.10.20021675.
doi: 10.1101/2020.02.10.20021675 |
[6] |
Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet, 2020, 395(10225): 689-697.
doi: 10.1016/S0140-6736(20)30260-9 |
[7] |
Wang H W, Wang Z Z, Dong Y Q, et al. Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China. Cell Discovery, 2020, 6(10). DOI: 10.1038/s41421-020-0148-0.
doi: 10.1038/s41421-020-0148-0 |
[8] |
Wang Y, Ma J L, Cao J D, et al. Edge-based epidemic spreading in degree-correlated complex networks. Journal of Theoretical Biology, 2018, 454: 164-181.
doi: S0022-5193(18)30298-4 pmid: 29885412 |
[9] |
Sun G Q, Jusup M, Jin Z, et al. Pattern transitions in spatial epidemics: Mechanisms and emergent properties. Physics of Life Reviews, 2016, 19: 43-73.
doi: 10.1016/j.plrev.2016.08.002 |
[10] | Zhao Ziyu, Wei Ye, Yang Ran, et al. Gravity model coefficient calibration and error estimation: Based on Chinese interprovincial population flow. Acta Geographica Sinica, 2019, 74(2): 203-221. |
[ 赵梓渝, 魏冶, 杨冉, 等. 中国人口省际流动重力模型的参数标定与误差估算. 地理学报, 2019, 74(2): 203-221.] | |
[11] |
Charu V, Zeger S, Gog J, et al. Human mobility and the spatial transmission of influenza in the United States. Plos Computational Biology, 2017, 13(2): e1005382. DOI: 10.1371/journal.pcbi.1005382.
doi: 10.1371/journal.pcbi.1005382 |
[12] |
Brockmann D, Helbing D. The hidden geometry of complex, network-driven contagion phenomena. Science, 2013, 342(6164): 1337-1342.
doi: 10.1126/science.1245200 pmid: 24337289 |
[13] | Zhou Chenghu, Pei Tao, Du Yunyan, et al. Big data analysis on COVID-19 epidemic and suggestions on regional prevention and control policy. Bulletin of Chinese Academy of Sciences, 2020, 35(2): 200-203. |
[ 周成虎, 裴韬, 杜云艳, 等. 新冠肺炎疫情大数据分析与区域防控政策建议. 中国科学院院刊, 2020, 35(2): 200-203.] | |
[14] |
Wang Jiaoe, Du Delin, Wei Ye, et al. The development of COVID-19 in China: Spatial diffusion and geographical pattern. Geographical Research, 2020, 39(7): 1450-1462.
doi: 10.11821/dlyj020200329 |
[ 王姣娥, 杜德林, 魏冶, 等. 新冠肺炎疫情的空间扩散过程与模式研究. 地理研究, 2020, 39(7): 1450-1462.] | |
[15] |
Fang Y Q, Nie Y T, Penny M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-riven analysis. Journal of Medical Virology, 2020, 92(6): 645-659.
doi: 10.1002/jmv.v92.6 |
[16] |
Ruktanonchai N W, Floyd J R, Lai S J, et al. Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science, 2020, 369(6510): 1465-1470.
doi: 10.1126/science.abc5096 pmid: 32680881 |
[17] |
Weng W G, Ni S J. Evaluation of containment and mitigation strategies for an influenza A pandemic in China. Simulation, 2015, 91(5): 407-416.
doi: 10.1177/0037549715581637 |
[18] | Zhu Yu, Ding Jinhong, Wang Guixin, et al. Research progress on population geography in China in recent 40 years: A cross-disciplinary perspective. Progress in Geography, 2017, 36(4): 466-482. |
[ 朱宇, 丁金宏, 王桂新, 等. 近40年来的中国人口地理学: 一个跨学科研究领域的进展. 地理科学进展, 2017, 36(4): 466-482.] | |
[19] |
Zhao Ziyu, Wei Ye, Pang Ruiqiu, et al. Spatiotemporal and structural characteristics of interprovincial population flow during the 2015 Spring Festival Travel Rush. Progress in Geography, 2017, 36(8): 952-964.
doi: 10.18306/dlkxjz.2017.08.00 |
[ 赵梓渝, 魏冶, 庞瑞秋, 等. 中国春运人口省际流动的时空与结构特征. 地理科学进展, 2017, 36(8): 952-964.] | |
[20] |
Ye J Z. Stayers in China's "hollowed-out" villages: A counter narrative on massive rural-urban migration. Population Space and Place, 2017, 24(4): e2128. DOI: 10.1002/psp.2128.
doi: 10.1002/psp.2128 |
[21] |
Ernsten A, Mccollum D, Feng Z Q, et al. Using linked administrative and census data for migration research. Population Studies, 2018, 72(3): 357-367.
doi: 10.1080/00324728.2018.1502463 |
[22] |
Ebenstein A, Zhao Y H. Tracking rural-to-urban migration in China: Lessons from the 2005 inter-census population survey. Population Studies, 2015, 69(3): 337-353.
doi: 10.1080/00324728.2015.1065342 pmid: 26296099 |
[23] | Zhu Y, Chen W. The settlement intention of China's floating population in the cities: Recent changes and multifaceted individual level determinants. Population Space & Place, 2010, 16(4): 253-267. |
[24] | Lu Y M, Liu Y. Pervasive location acquisition technologies: Opportunities and challenges for geospatial studies. Computers Environment & Urban Systems, 2012, 36(2): 105-108. |
[25] |
Liu Y, Liu X, Gao S, et al. Social sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 2015, 105(3): 512-530.
doi: 10.1080/00045608.2015.1018773 |
[26] | Wang Xia, Tang Sanyi, Chen Yong, et al. When will be the resumption of work in Wuhan and its surrounding areas during COVID-19 epidemic? A data-driven network modeling analysis. Scientia Sinica (Mathematica), 2020, 50(7): 969-978. |
[ 王霞, 唐三一, 陈勇, 等. 新型冠状病毒肺炎疫情下武汉及周边地区何时复工? 数据驱动的网络模型分析. 中国科学: 数学, 2020, 50(7): 969-978.] | |
[27] |
Riley S. Large-scale spatial-transmission models of infectious disease. Science, 2007, 316(5829): 1298-1301.
doi: 10.1126/science.1134695 |
[28] |
Wang L, Li X. Spatial epidemiology of networked metapopulation: An overview. Chinese Science Bulletin, 2014, 59(28): 3511-3522.
doi: 10.1007/s11434-014-0499-8 |
[29] |
Wu J T, Riley S, Fraser C, et al. Reducing the impact of the next influenza pandemic using household-based public health interventions. PLoS Medicine, 2006, 3(9): e361. DOI: 10.1371/journal.pmed.0030361.
doi: 10.1371/journal.pmed.0030361 |
[30] |
Ferguson N M, Keeling M J, Edmunds W J, et al. Planning for smallpox outbreaks. Nature, 2003, 425(6959): 681-685.
doi: 10.1038/nature02007 |
[31] |
Epstein J M, Goedecke D M, Yu F, et al. Controlling pandemic flu: The value of international air travel restrictions. PLOS ONE, 2007, 2(5): e401. DOI: 10.1371/journal.pone.0000401.
doi: 10.1371/journal.pone.0000401 |
[32] |
Viboud C, Bjørnstad O N, Smith D L, et al. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science, 2006, 312(5772): 447-451.
doi: 10.1126/science.1125237 |
[33] |
Kerkhove M D V, Ferguson N M. Epidemic and intervention modelling: A scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic. Bull World Health Organ, 2012, 90(4): 306-310.
doi: 10.2471/BLT.11.097949 |
[34] | Viboud C, Nelson M I, Tan Y, et al. Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2013, 368(1614): 83-89. |
[35] |
Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 2020, 382(13): 1199-1207.
doi: 10.1056/NEJMoa2001316 |
[36] |
Wu J T, Leung K, Bushman M, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine, 2020, 26: 506-510.
doi: 10.1038/s41591-020-0822-7 |
[37] |
Jia J S, Lu X, Yuan Y, et al. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature, 2020, 582: 389-394.
doi: 10.1038/s41586-020-2284-y |
[38] |
Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective. Acta Geographica Sinica, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[ 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.] | |
[39] |
Wang J F, Zhang T L, Fu B J. A measure of spatial stratified heterogeneity. Ecological Indicators, 2016, 67: 250-256.
doi: 10.1016/j.ecolind.2016.02.052 |
[40] | Zhao Ziyu, Wang Shijun. A study of inter-provincial population flow spatial-temporal pattern during Chinese Spring Festival Travel Rush. Population Research, 2017, 41(3): 101-112. |
[ 赵梓渝, 王士君. 2015年我国春运人口省际流动的时空格局. 人口研究, 2017, 41(3): 101-112.] | |
[41] |
Fong M W, Gao H Z, Wong J Y, et al. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings-social distancing measures. Emerging Infectious Diseases, 2020, 26(5): 976-984.
doi: 10.3201/eid2605.190995 pmid: 32027585 |
[42] | Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chinese Journal of Epidemiology, 2020, 41(2): 145-151. |
[43] |
Lai S, Ruktanonchai N W, Zhou L, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature, 2020, 585(7825): 410-413.
doi: 10.1038/s41586-020-2293-x |
[44] |
Massaro E, Kondor D, Ratti C. Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Scientific Reports, 2019, 9(1): 16911. DOI: 10.1038/s41598-019-53127-z.
doi: 10.1038/s41598-019-53127-z |
[45] |
Lindsay S W, Wilson A, Golding N, et al. Improving the built environment in urban areas to control Aedes aegypti-borne diseases. Bulletin of the World Health Organization, 2017, 95(8): 607-608.
doi: 10.2471/BLT.16.189688 pmid: 28804174 |
[46] |
Zlojutro A, Rey D, Gardner L. A decision-support framework to optimize border control for global outbreak mitigation. Scientific Reports, 2019, 9(1): 2216. DOI: 10.1038/s41598-019-38665-w.
doi: 10.1038/s41598-019-38665-w pmid: 30778107 |
[1] | 杨宇. 中国与全球能源网络的互动逻辑与格局转变[J]. 地理学报, 2022, 77(2): 295-314. |
[2] | 朱晟君, 杨博飞, 刘逸. 经济全球化变革下的世界经济地理与中国角色[J]. 地理学报, 2022, 77(2): 315-330. |
[3] | 刘承良, 闫姗姗. 中国跨国城际技术通道的空间演化及其影响因素[J]. 地理学报, 2022, 77(2): 331-352. |
[4] | 李广东. 全球土地覆被时空变化与中国贡献[J]. 地理学报, 2022, 77(2): 353-368. |
[5] | 叶超, 杨东阳, 赵江南. 中国超大城市户籍人口转化的实证研究[J]. 地理学报, 2022, 77(2): 369-380. |
[6] | 刘涛, 彭荣熙, 卓云霞, 曹广忠. 2000—2020年中国人口分布格局演变及影响因素[J]. 地理学报, 2022, 77(2): 381-394. |
[7] | 穆学英, 崔璨, 崔军茹, 王洁晶. 中国流动人口的跨等级流动及其对流入城市住房选择的影响[J]. 地理学报, 2022, 77(2): 395-410. |
[8] | 柯文前, 朱宇, 陈晨, Guy J. Abel, 林李月, 林洁. 1995—2015年中国人口迁移的时空变化特征[J]. 地理学报, 2022, 77(2): 411-425. |
[9] | 王博云, 刘天禹, 李露凝, 李强, 贾鹏飞, 陈晋. 中国COVID-19疫情扩散的时空模式及影响因素[J]. 地理学报, 2022, 77(2): 443-456. |
[10] | 王强, 周侃, 林键. 中国城乡家庭能源平等变化特征分析[J]. 地理学报, 2022, 77(2): 457-473. |
[11] | 贺灿飞, 余昌达. 多维邻近性、贸易壁垒与中国—世界市场的产业联系动态演化[J]. 地理学报, 2022, 77(2): 275-294. |
[12] | 陈之端, 张晓霞, 胡海花, 牛艳婷, 叶建飞, 张虔, 刘赟, 赵莉娜, 卢杉, 鲁丽敏, 路安民. 中国植物地理学研究进展与展望[J]. 地理学报, 2022, 77(1): 120-132. |
[13] | 李振亚, 魏伟, 周亮, 刘春芳, 郭泽呈, 庞素菲, 张静. 中国陆地生态敏感性时空演变特征[J]. 地理学报, 2022, 77(1): 150-163. |
[14] | 吴健生, 何海珊, 胡甜. 地表温度“源—汇”景观贡献度的影响因素分析[J]. 地理学报, 2022, 77(1): 51-65. |
[15] | 蔡兴冉, 李忠勤, 张慧, 徐春海. 中国天山冰川变化脆弱性研究[J]. 地理学报, 2021, 76(9): 2253-2268. |