地理学报 ›› 2022, Vol. 77 ›› Issue (1): 245-258.doi: 10.11821/dlxb202201017
• 生态系统服务与环境健康 • 上一篇
魏海涛1,2(), 刘岩1,2, 田智慧1,2, 王晓蕾1,2, 赫晓慧1,2(
), 韦晶3,4
收稿日期:
2020-08-11
修回日期:
2021-04-19
出版日期:
2022-01-25
发布日期:
2022-03-25
通讯作者:
赫晓慧(1978-), 女, 博士, 教授, 研究领域为地理时空数据分析。E-mail: hexh@zzu.edu.cn作者简介:
魏海涛(1986-), 男, 博士, 讲师, 研究领域为健康地理学和空间数据分析。E-mail: zzu_wei@163.com
基金资助:
WEI Haitao1,2(), LIU Yan1,2, TIAN Zhihui1,2, WANG Xiaolei1,2, HE Xiaohui1,2(
), WEI Jing3,4
Received:
2020-08-11
Revised:
2021-04-19
Published:
2022-01-25
Online:
2022-03-25
Supported by:
摘要:
肺癌是最常见的恶性肿瘤之一,也是主要的肿瘤死因,河南省肺癌发病率和死亡率常年居恶性肿瘤首位,研究肺癌的空间分布格局及其与环境因子的关系对肺癌的相关防控工作意义重大。本文以2016—2018年河南省肺癌发病数据为研究对象,使用空间自相关分析方法研究河南省肺癌的空间分布格局,基于地理探测器量化各个环境因子及其两两交互作用对肺癌发病率的解释力。结果表明:空间上肺癌具有明显的集聚特征,高发区集中分布于豫中、豫东和豫南的平原和盆地地区。在所选的12种环境因子中,PM2.5浓度、O3浓度、年均风速、采矿业从业人员占比、人均GDP具有更高的决定力,人均GDP和医护人员占比则对多种要素的决定力均具有明显的非线性增强的作用。研究结果可以为河南省肺癌发病机理研究和相关防治工作提供科学支撑。
魏海涛, 刘岩, 田智慧, 王晓蕾, 赫晓慧, 韦晶. 河南省肺癌空间分布格局及环境因素影响[J]. 地理学报, 2022, 77(1): 245-258.
WEI Haitao, LIU Yan, TIAN Zhihui, WANG Xiaolei, HE Xiaohui, WEI Jing. Spatial distribution pattern and environmental impact of lung cancer in Henan[J]. Acta Geographica Sinica, 2022, 77(1): 245-258.
[1] | Li Rui, Li Qing, Xu Jian, et al. Regional air pollution process in winter over the Yangtze River Delta and its influence on typical northern cities. Environmental Science, 2020, 41(4): 1520-1534. |
[ 李瑞, 李清, 徐健, 等. 秋冬季区域性大气污染过程对长三角北部典型城市的影响. 环境科学, 2020, 41(4): 1520-1534.] | |
[2] |
Freddie B, Jacques F, Isabelle S, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018, 68: 394-424.
doi: 10.3322/caac.21492 pmid: 30207593 |
[3] |
Wang Quan, Shen Qin, Zhang Zelin, et al. Prediction of gene mutation in lung cancer based on deep learning and histomorphology analysis. Journal of Biomedical Engineering, 2020, 37(1): 10-18.
doi: 10.7507/1001-5515.201904018 pmid: 32096372 |
[ 王荃, 沈勤, 张泽林, 等. 基于深度学习和组织形态分析的肺癌基因突变预测. 生物医学工程学杂志, 2020, 37(1): 10-18.]
pmid: 32096372 |
|
[4] |
Lu T, Yang X D, Huang Y W, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Management and Research, 2019, 11: 943-953.
doi: 10.2147/CMAR |
[5] |
Cao M M, Chen W Q. Epidemiology of lung cancer in China. Thoracic Cancer, 2018, 10(1): 3-7.
doi: 10.1111/tca.2019.10.issue-1 |
[6] |
Chen X Y, Shao S, Tian Z H, et al. Impacts of air pollution and its spatial spillover effect on public health based on China's big data sample. Journal of Cleaner Production, 2017, 142: 915-925.
doi: 10.1016/j.jclepro.2016.02.119 |
[7] |
Liu M M, Huang Y N, Ma Z W, et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-2012. Environment International, 2017, 98: 75-81.
doi: 10.1016/j.envint.2016.10.003 |
[8] |
Ferrando J, Palència L, Gotsens M, et al. Trends in cancer mortality in Spain: The influence of the financial crisis. Gaceta Sanitaria, 2019, 33(3): 229-234.
doi: S0213-9111(18)30005-0 pmid: 29452751 |
[9] |
Poinen-Rughooputh S, Rughooputh M S, Guo Y, et al. Occupational exposure to silica dust and risk of lung cancer: An updated meta-analysis of epidemiological studies. BMC Public Health, 2016, 16: 1137. DOI: 10.1186/s12889-016-3791-5.
doi: 10.1186/s12889-016-3791-5 pmid: 27814719 |
[10] | Wang Qiangxiang, Tan Zhengying, Zhao Hui, et al. Species of iron in size-resolved particle emitted from Xuanwei coal combustion and their oxidative potential. Environmental Science, 2017, 38(6): 2273-2279. |
[ 王强翔, 谭正莹, 赵慧, 等. 宣威肺癌高发区燃煤排放颗粒物中铁的价态及其氧化性. 环境科学, 2017, 38(6): 2273-2279.] | |
[11] | Deng Anqi, Dong Zhaomin, Gao Qun, et al. Health risk assessment of arsenic in groundwater across China. China Environmental Science, 2017, 37(9): 3556-3565. |
[ 邓安琪, 董兆敏, 高群, 等. 中国地下水砷健康风险评价. 中国环境科学, 2017, 37(9): 3556-3565.] | |
[12] |
Angelino D, Godos J, Ghelfi F, et al. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. International Journal of Food Sciences and Nutrition, 2019, 70(6): 652-667.
doi: 10.1080/09637486.2019.1571021 pmid: 30764679 |
[13] |
Li J X, Lu X F, Liu F C, et al. Chronic effects of high fine particulate matter exposure on lung cancer in China. American Journal of Respiratory and Critical Care Medicine, 2020, 202(11): 1551-1559.
doi: 10.1164/rccm.202001-0002OC |
[14] |
Liu X X, Zhou M G, Wang F, et al. Secular trend of cancer death and incidence in 29 cancer groups in China, 1990-2017: A joinpoint and age-period-cohort analysis. Cancer Management and Research, 2020, 12: 6221-6238.
doi: 10.2147/CMAR.S247648 |
[15] |
Chen W Q, Zheng R S, Baade P D, et al. Cancer statistics in China, 2015. CA: A Cancer Journal for Clinicians, 2016, 66(2): 115-132.
doi: 10.3322/caac.21338 |
[16] | Tian Shuju, Liu Yuqin, Zhang Jie, et al. An analysis of the incidence of lung cancer in Lanzhou, 2009. China Cancer, 2015, 24(2): 93-96. |
[ 田淑菊, 刘玉琴, 张洁, 等. 兰州市2009年肺癌发病分析. 中国肿瘤, 2015, 24(2): 93-96.] | |
[17] |
Xing D F, Xu C D, Liao X Y, et al. Spatial association between outdoor air pollution and lung cancer incidence in China. BMC Public Health, 2019, 19(1): 1377. DOI: 10.1186/s12889-019-7740-y.
doi: 10.1186/s12889-019-7740-y pmid: 31655581 |
[18] |
Valavanidis A, Vlachogianni T, Fiotakis K, et al. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 2013, 10(9): 3886-3907.
doi: 10.3390/ijerph10093886 pmid: 23985773 |
[19] |
Wei J, Li Z Q, Lyapustin A, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sensing of Environment, 2021, 252. DOI: 10.1016/j.rse.2020.112136.
doi: 10.1016/j.rse.2020.112136 |
[20] |
Liu Haimeng, Fang Chuanglin, Huang Jiejun, et al. The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 2018, 73(1): 177-191.
doi: 10.11821/dlxb201801015 |
[ 刘海猛, 方创琳, 黄解军, 等. 京津冀城市群大气污染的时空特征与影响因素解析. 地理学报, 2018, 73(1): 177-191.] | |
[21] |
He J, Yang K, Tang W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 2020, 7: 25. DOI: 10.1038/s41597-020-0369-y.
doi: 10.1038/s41597-020-0369-y |
[22] |
Yang K, He J, Tang W J, et al. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 2010, 150(1): 38-46.
doi: 10.1016/j.agrformet.2009.08.004 |
[23] |
Lin X L, Chen Y, Gong W W, et al. Geographic distribution and epidemiology of lung cancer during 2011 in Zhejiang Province of China. Asian Pacific Journal of Cancer Prevention, 2014, 15(13): 5299-5303.
doi: 10.7314/APJCP.2014.15.13.5299 |
[24] |
Marquès M, Domingo J L, Nadal M, et al. Health risks for the population living near petrochemical industrial complexes: 2. Adverse health outcomes other than cancer. Science of the Total Environment, 2020, 730: 139122. DOI: 10.1016/j.scitotenv.2020.139122.
doi: 10.1016/j.scitotenv.2020.139122 |
[25] |
Keramydas D, Bakakos P, Alchanatis M, et al. Investigation of the health effects on workers exposed to respirable crystalline silica during outdoor and underground construction projects. Experimental and Therapeutic Medicine, 2020, 20(2): 882-889.
doi: 10.3892/etm |
[26] |
Hachem M, Saleh N, Paunescu A C, et al. Exposure to traffic air pollutants in taxicabs and acute adverse respiratory effects: A systematic review. Science of the Total Environment, 2019, 693: 133439. DOI: 10.1016/j.scitotenv.2019.07.245.
doi: 10.1016/j.scitotenv.2019.07.245 |
[27] |
You W P, Rühli F J, Henneberg R J, et al. Greater family size is associated with less cancer risk: An ecological analysis of 178 countries. BMC Cancer, 2018, 18(1): 924. DOI: 10.1186/s12885-018-4837-0.
doi: 10.1186/s12885-018-4837-0 |
[28] |
Wang S C, Sung W W, Kao Y L, et al. The gender difference and mortality-to-incidence ratio relate to health care disparities in bladder cancer: National estimates from 33 countries. Scientific Reports, 2017, 7(1): 4360. DOI: 10.1038/s41598-017-04083-z.
doi: 10.1038/s41598-017-04083-z |
[29] |
Garten R J, Davis C T, Russell C A, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) Influenza viruses circulating in humans. Science, 2009, 325(5937): 197-201.
doi: 10.1126/science.1176225 |
[30] |
Li Meifang, Ou Jinpei, Li Xia. Spatio-temporal analysis of influenza A (H1N1) in China during 2009-2013 based on GIS. Geographical Research, 2016, 35(11): 2139-2152.
doi: 10.11821/dlyj201611011 |
[ 李美芳, 欧金沛, 黎夏. 基于地理信息系统的2009—2013年甲型H1N1流感的时空分析. 地理研究, 2016, 35(11): 2139-2152.] | |
[31] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
doi: 10.1080/13658810802443457 |
[32] |
Wang J F, Zhang T L, Fu B J. A measure of spatial stratified heterogeneity. Ecological Indicators, 2016, 67: 250-256.
doi: 10.1016/j.ecolind.2016.02.052 |
[33] |
Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective. Acta Geographica Sinica, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[ 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134.] | |
[34] |
Li Hanqi, Jia Peng, Fei Teng. Geographical association between dietary tastes and chronic diseases in China: An exploratory study using crowdsourcing data mining techniques. Acta Geographica Sinica, 2019, 74(8): 1637-1649.
doi: 10.11821/dlxb201908011 |
[ 李瀚祺, 贾鹏, 费腾. 基于众源数据挖掘的中国饮食口味与慢性病的空间关联. 地理学报, 2019, 74(8): 1637-1649.] | |
[35] | Bai Ling, Luo Yibin, Jiang Lei, et al. Spatio-temporal characteristics and influencing factors of China's urban NOx emissions: A spatial stratified heterogeneity perspective. Acta Scientiae Circumstantiae, 2020, 40(2): 687-696. |
[ 柏玲, 罗溢斌, 姜磊, 等. 中国城市NOx排放的时空特征与驱动因素: 基于空间分异视角. 环境科学学报, 2020, 40(2): 687-696.] | |
[36] |
Hu Kaiheng, Wei Li, Liu Shuang, et al. Spatial pattern of debris-flow catchments and the rainfall amount of triggering debris flows in the Hengduan Mountains region. Acta Geographica Sinica, 2019, 74(11): 2303-2313.
doi: 10.11821/dlxb201911008 |
[ 胡凯衡, 魏丽, 刘双, 等. 横断山区泥石流空间格局和激发雨量分异性研究. 地理学报, 2019, 74(11): 2303-2313.] | |
[37] |
Li Jiaming, Lu Dadao, Xu Chengdong, et al. Spatial heterogeneity and its changes of population on the two sides of Hu Line. Acta Geographica Sinica, 2017, 72(1): 148-160.
doi: 10.11821/dlxb201701012 |
[ 李佳洺, 陆大道, 徐成东, 等. 胡焕庸线两侧人口的空间分异性及其变化. 地理学报, 2017, 72(1): 148-160.] | |
[38] | Wang Yuanlin, Li Jie, Li Ang, et al. Modeling study of surface PM2.5 and its source apportionment over Henan in 2013-2014. Acta Scientiae Circumstantiae, 2016, 36(10): 3543-3553. |
[ 王媛林, 李杰, 李昂, 等. 2013—2014年河南省PM2.5浓度及其来源模拟研究. 环境科学学报, 2016, 36(10): 3543-3553.] | |
[39] |
Guo H G, Li W F, Wu J S. Ambient PM2.5 and annual lung cancer incidence: A nationwide study in 295 Chinese counties. International Journal of Environmental Research and Public Health, 2020, 17(5): 1481. DOI: 10.3390/ijerph17051481.
doi: 10.3390/ijerph17051481 |
[40] | Zheng Baoli, Liang Liutao, Li Mingming. Analysis of temporal and spatial patterns of PM2.5 in prefecture-level cities of China from 1998 to 2016. China Environmental Science, 2019, 39(5): 1909-1919. |
[ 郑保利, 梁流涛, 李明明. 1998—2016年中国地级以上城市PM2.5污染时空格局. 中国环境科学, 2019, 39(5): 1909-1919.] | |
[41] | Luo Pengfei, Lin Ping, Zhou Jinyi. Progress on epidemiological studies of the relationship between lung cancer and ambient air pollution. China Cancer, 2017, 26(10): 792-797. |
[ 罗鹏飞, 林萍, 周金意. 肺癌与大气污染关系的流行病学研究进展. 中国肿瘤, 2017, 26(10): 792-797.] | |
[42] | Lin Tingkun, Hong Linan, Huang Zhengchao, et al. Meteorological and pollution characteristics under atmospheric circulation types in autumn and winter in Beijing. China Environmental Science, 2019, 39(5): 1813-1822. |
[ 林廷坤, 洪礼楠, 黄争超, 等. 北京市秋冬季大气环流型下的气象和污染特征. 中国环境科学, 2019, 39(5): 1813-1822.] | |
[43] | Qi Yanjie, Yu Shijie, Yang Jian, et al. Analysis of characteristics and meteorological influence factors of ozone pollution in Henan Province. Environmental Science, 2020, 41(2): 587-599. |
[ 齐艳杰, 于世杰, 杨健, 等. 河南省臭氧污染特征与气象因子影响分析. 环境科学, 2020, 41(2): 587-599.] | |
[44] | Wang Yanchao, Jiang Chunlai, He Jinyu, et al. Analysis of air pollutants control in cement industry in and around Beijing-Tianjin-Hebei region. China Environmental Science, 2018, 38(10): 3683-3688. |
[ 王彦超, 蒋春来, 贺晋瑜. 京津冀及周边地区水泥工业大气污染控制分析. 中国环境科学, 2018, 38(10): 3683-3688.] | |
[45] |
Wei O Y, Gao B, Cheng H G, et al. Exposure inequality assessment for PM2.5 and the potential association with environmental health in Beijing. Science of the Total Environment, 2018, 635: 769-778.
doi: 10.1016/j.scitotenv.2018.04.190 |
[1] | 田浩, 刘琳, 张正勇, 陈泓瑾, 张雪莹, 王统霞, 康紫薇. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729. |
[2] | 宋飏, 刘艳晓, 张瑜, 王士君. 中国手足口病时空分异特征及影响因素[J]. 地理学报, 2022, 77(3): 574-588. |
[3] | 蔡兴冉, 李忠勤, 张慧, 徐春海. 中国天山冰川变化脆弱性研究[J]. 地理学报, 2021, 76(9): 2253-2268. |
[4] | 姜磊, 陈星宇, 朱竑. 中国城市养老院的空间分布特征及其分异成因[J]. 地理学报, 2021, 76(8): 1951-1964. |
[5] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[6] | 周扬, 李寻欢, 童春阳, 黄晗. 中国村域贫困地理格局及其分异机理[J]. 地理学报, 2021, 76(4): 903-920. |
[7] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[8] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[9] | 潘竟虎, 冯娅娅. 中国农村深度贫困的空间扫描与贫困分异机制的地理探测[J]. 地理学报, 2020, 75(4): 769-788. |
[10] | 刘敏, 郝炜. 山西省国家A级旅游景区空间分布影响因素研究[J]. 地理学报, 2020, 75(4): 878-888. |
[11] | 戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析[J]. 地理学报, 2020, 75(3): 607-619. |
[12] | 赵建吉, 王艳华, 王珏, 苗长虹. 省直管县改革背景下地级市空间溢出效应对县域产业结构的影响[J]. 地理学报, 2020, 75(2): 286-301. |
[13] | 鲁大铭, 杨新军, 石育中, 王子侨. 黄土高原乡村体制转换与转型发展[J]. 地理学报, 2020, 75(2): 348-364. |
[14] | 彭文甫, 张冬梅, 罗艳玫, 陶帅, 徐新良. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776. |
[15] | 李瀚祺, 贾鹏, 费腾. 基于众源数据挖掘的中国饮食口味与慢性病的空间关联[J]. 地理学报, 2019, 74(8): 1637-1649. |