地理学报 ›› 2022, Vol. 77 ›› Issue (1): 120-132.doi: 10.11821/dlxb202201009
陈之端1(), 张晓霞1, 胡海花1, 牛艳婷1,2, 叶建飞1,2, 张虔1, 刘赟1,3, 赵莉娜1,3, 卢杉1,4, 鲁丽敏1, 路安民1
收稿日期:
2020-07-03
修回日期:
2021-03-21
出版日期:
2022-01-25
发布日期:
2022-03-25
作者简介:
陈之端(1964-), 男, 山东鱼台人, 研究员, 博士生导师, 主要从事植物系统发生重建和生物地理学相关研究。E-mail: zhiduan@ibcas.ac.cn
基金资助:
CHEN Zhiduan1(), ZHANG Xiaoxia1, HU Haihua1, NIU Yanting1,2, YE Jianfei1,2, ZHANG Qian1, LIU Yun1,3, ZHAO Lina1,3, LU Shan1,4, LU Limin1, LU Anmin1
Received:
2020-07-03
Revised:
2021-03-21
Published:
2022-01-25
Online:
2022-03-25
Supported by:
摘要:
中国植物地理学从20世纪20年代初创到当前繁荣经历了100年的发展,近30年来测序技术和生物信息技术的进步,促进了分类、进化和生态等学科交叉融合,中国植物地理学在诸多方面取得了突破性进展,主要包括:① 植物类群和区系在中国整体上按纬度、经度和海拔呈现出规律性;物种丰富度、系统发生多样性和特有性热点集中分布在南部山地,少数分布在北方山地和干旱地区。② 关于大尺度植物多样性格局及形成机制,多数热带起源科的物种多样性格局受冬季低温的限制,而多数温带起源科的物种多样性格局由末次冰期以来的气候变化主导;中国山地植物和群落具有显著的垂直地带性和空间分布异质性,热量因子是中国高山植物区系地理分异的首要气候因子。③ 中国大多数现生被子植物属(约66%)是在中新世及其以后分化;500 mm年等降水线是中国植物区系年龄和植被分区最重要的分界线;中国植物区系、区系中的特征或关键类群的起源和多样化与青藏高原抬升和亚洲季风加强密切相关。未来,时间和空间的结合仍是植物地理学研究的主旋律,类群、群落和区系分化时间的估算及物种分布数据的分辨率是研究者关注的焦点,植物大数据的持续积累和完善将为学科发展提供强大动力和广阔前景。
陈之端, 张晓霞, 胡海花, 牛艳婷, 叶建飞, 张虔, 刘赟, 赵莉娜, 卢杉, 鲁丽敏, 路安民. 中国植物地理学研究进展与展望[J]. 地理学报, 2022, 77(1): 120-132.
CHEN Zhiduan, ZHANG Xiaoxia, HU Haihua, NIU Yanting, YE Jianfei, ZHANG Qian, LIU Yun, ZHAO Lina, LU Shan, LU Limin, LU Anmin. Plant geography in China: History, progress and prospect[J]. Acta Geographica Sinica, 2022, 77(1): 120-132.
[1] | Lomolino M V, Riddle B R, Brown J H. Biogeography. Sunderland: Sinauer Associates, 2006. |
[2] | Ying Tsun-shen, Chen Mengling. Phytogeography of China. Shanghai: Shanghai Science and Technology Press, 2011. |
[ 应俊生, 陈梦玲. 中国植物地理. 上海: 上海科学技术出版社, 2011.] | |
[3] | Ma Jinshuang, Hu Zonggang, Liao Shuai, et al. A Chronicle of Plant Taxonomy in China. Zhengzhou: Henan Science and Technology Press, 2020. |
[ 马金双, 胡宗刚, 廖帅, 等. 中国植物分类学纪事. 郑州: 河南科学技术出版社, 2020.] | |
[4] | Liou Tchen-ngo. An introduction to phytogeography of North and West China. Contributions from the Institute of Botany of National Academy of Peiping, 1934, 2: 423-451. |
[ 刘慎谔. 中国北部及西部植物地理概论. 国立北平研究院植物学研究所丛刊, 1934, 2: 423-451.] | |
[5] | Wu Zhengyi. Vegetation of China. Beijing: Science Press, 1980. |
[ 吴征镒. 中国植被. 北京: 科学出版社, 1980.] | |
[6] | Zhang Xinshi. Vegetation Map of the People's Republic of China (1:1000000). Beijing: Geological Press, 2007. |
[ 张新时. 中华人民共和国植被图(1∶10000000). 北京: 地质出版社, 2007.] | |
[7] | Hou Hsioh-yu. The geographical distribution of vegetation of China related to the horizontal and vertical zonation. Acta Botanica Boreall-Occidentalla Sinica, 1981, 1(2): 1-13. |
[ 侯学煜. 中国植被地理分布的规律性. 西北植物研究, 1981, 1(2): 1-13.] | |
[8] | Zhong Zhangcheng, Miao Shili. The Chinese vegetation and its regularities of distribution. Journal of Southwest Normal University (Natural Science Edition), 1986(1): 1-36. |
[ 钟章成, 缪世利. 中国植被及其分布规律. 西南师范大学学报(自然科学版), 1986(1): 1-36.] | |
[9] | Zhang Xinshi. The plateau zonality of vegetation in Xizang. Acta Botanica Sinica, 1978, 20: 140-149. |
[ 张新时. 西藏植被的高原地带性. 植物学报, 1978, 20: 140-149.] | |
[10] | Chen Lingzhi, Sun Hang, Guo Ke. Floristic and Vegetational Geography of China. Beijing: Science Press, 2014. |
[ 陈灵芝, 孙航, 郭柯. 中国植物区系与植被地理. 北京: 科学出版社, 2014.] | |
[11] | Sun Xiangjun, He Yueming. Sporo-pollen Researches from the Paleocene of Jiangxi Province. Beijing: Science Press, 1980. |
[ 孙湘君, 何月明. 江西古新世孢粉研究. 北京: 科学出版社, 1980.] | |
[12] | Sun Xiangjun, He Yueming. Neogene sporo-pollen assemblages from Jiangxi Province, China. Botanical Research, 1987, 3: 83-108. |
[ 孙湘君, 何月明. 江西晚第三纪孢粉. 植物学集刊, 1987, 3: 83-108.] | |
[13] | Tao Junrong. The Tertiary vegetation and floristic regionalization in China. Acta Phytotaxonomica Sinica, 1992, 30: 25-43. |
[ 陶君容. 中国第三纪植被和植物区系历史及分区. 植物分类学报, 1992, 30: 25-43.] | |
[14] | Tao Junrong. The Evolution of the Late Cretaceous-Cenozoic Floras in China. Beijing: Science Press, 2000. |
[ 陶君容. 中国晚白垩世至新生代植物区系发展演变. 北京: 科学出版社, 2000.] | |
[15] |
Sun X J, Wang P X. How old is the Asian monsoon system? Paleobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222: 181-222.
doi: 10.1016/j.palaeo.2005.03.005 |
[16] |
Qin Haining, Yang Yong, Dong Shiyong, et al. Threatened species list of China's higher plants. Biodiversity Science, 2017, 25(7): 696-744.
doi: 10.17520/biods.2017144 |
[ 覃海宁, 杨永, 董仕勇, 等. 中国高等植物受威胁物种名录. 生物多样性, 2017, 25(7): 696-744.] | |
[17] |
Heath T A, Huelsenbeck J P, Stadler T. The fossilized birth-death process for coherent calibration of divergence-time estimates. PNAS, 2014, 111: E2957-E2966.
doi: 10.1073/pnas.1319091111 |
[18] |
Morley R J. Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology Evolution and Systematics, 2003, 6: 5-20.
doi: 10.1078/1433-8319-00039 |
[19] |
Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693.
pmid: 11326091 |
[20] |
Azuma H, García-Franco J G, Rico-Gray V, et al. Molecular phylogeny of the Magnoliaceae: The biogeography of tropical and temperate disjunctions. American Journal of Botany, 2001, 88(12): 2275-2285.
pmid: 21669660 |
[21] |
Chin S W, Shaw J, Haberle R, et al. Diversification of almonds, peaches, plums and cherries: Molecular systematics and biogeographic history of Prunus (Rosaceae). Molecular Phylogenetics and Evolution, 2014, 76: 34-48.
doi: 10.1016/j.ympev.2014.02.024 |
[22] |
Tiffney B H, Manchester S R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Sciences, 2001, 162: S3-S17.
doi: 10.1086/323880 |
[23] |
Duan L, Harris A J, Su C, et al. A fossil-calibrated phylogeny reveals the biogeographic history of the Cladrastis clade, an amphi-Pacific early-branching group in papilionoid legumes. Molecular Phylogenetics and Evolution, 2020, 143: 106673. DOI: 10.1016/j.ympev.2019.106673.
doi: S1055-7903(19)30605-0 pmid: 31707137 |
[24] |
Deng T, Nie Z L, Drew B T, et al. Does the Arcto-Tertiary biogeographic hypothesis explain the disjunct distribution of northern hemisphere herbaceous plants? The case of Meehania (Lamiaceae). PLOS ONE, 2015, 10. DOI: 10.1371/journal.pone.0117171.
doi: 10.1371/journal.pone.0117171 |
[25] |
Du Z Y, Harris A J, Xiang Q Y. Phylogenomics, co-evolution of ecological niche and morphology, and historical biogeography of buckeyes, horsechestnuts, and their relatives (Hippocastaneae, Sapindaceae) and the value of RAD-Seq for deep evolutionary inferences back to the Late Cretaceous. Molecular Phylogenetics and Evolution, 2020, 145: 106726. DOI: 10.1016/j.ympev.2019.106726.
doi: 10.1016/j.ympev.2019.106726 |
[26] |
Yu X Q, Gao L M, Soltis D E, et al. Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytologist, 2017, 215(3): 1235-1248.
doi: 10.1111/nph.2017.215.issue-3 |
[27] |
Zhang Y X, Zeng C X, Li D Z. Complex evolution in Arundinarieae (Poaceae: Bambusoideae): Incongruence between plastid and nuclear GBSSI gene phylogenies. Molecular Phylogenetics and Evolution, 2012, 63(3): 777-797.
doi: 10.1016/j.ympev.2012.02.023 |
[28] |
Xiang X G, Mi X C, Zhou H L, et al. Biogeographical diversification of mainland Asian Dendrobium (Orchidaceae) and its implications for the historical dynamics of evergreen broad-leaved forests. Journal of Biogeography, 2016, 43(7): 1310-1323.
doi: 10.1111/jbi.12726 |
[29] |
Deng T, Wang X M, Wu F X, et al. Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Global and Planetary Change, 2019, 174: 58-69.
doi: 10.1016/j.gloplacha.2019.01.005 |
[30] | Hsu Jen, Tao Junrong, Sun Xiangjun. On the discovery of a Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology. Acta Botanica Sinica, 1973, 15(1): 103-119. |
[ 徐仁, 陶君容, 孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义. 植物学报, 1973, 15(1): 103-119.] | |
[31] |
Spicer R A, Harris N B, Widdowson M, et al. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003, 421: 622-624.
doi: 10.1038/nature01356 |
[32] |
Su T, Farnsworth A, Spicer R, et al. No high Tibetan Plateau until the Neogene. Science Advances, 2019, 5: eaav2189. DOI: 10.1126/sciadv.aav2189.
doi: 10.1126/sciadv.aav2189 |
[33] |
Zhou Z K, Yang Q S, Xia K. Fossils of Quercus sect. Heterobalanus can help explain the uplift of the himalayas. Chinese Science Bulletin, 2007, 52: 238. DOI: 10.1007/s11434-007-0005-7.
doi: 10.1007/s11434-007-0005-7 |
[34] |
Yu H B, Deane D C, Sui X H, et al. Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecology and Biogeography, 2019, 28(2): 131-144.
doi: 10.1111/geb.v28.2 |
[35] |
Ding W N, Ree R H, Spicer R A, et al. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science, 2020, 369(6503): 578-581.
doi: 10.1126/science.abb4484 |
[36] | Ying Tsun-shen, Zhang Zhisong. Endemism in the flora of China: Studies on the endemic genera. Acta Phytotaxonomica Sinica, 1984, 22: 259-268. |
[ 应俊生, 张志松. 中国植物区系中的特有现象: 特有属的研究. 植物分类学报, 1984, 22: 259-268.] | |
[37] | Li Xiwen. Floristic statistics and analyses of seed plants from China. Acta Botanica Yunnanica, 1996, 18(4): 363-384. |
[ 李锡文. 中国种子植物区系统计分析. 云南植物研究, 1996, 18(4): 363-384.] | |
[38] | Ying Tsun-shen, Zhang Yulong. The Endemic Genera of Seed Plants of China. Beijing: Science Press, 1994. |
[ 应俊生, 张玉龙. 中国种子植物特有属. 北京: 科学出版社, 1994.] | |
[39] |
Faith D P. Conservation evaluation and phylogenetic diversity. Biological Conservation, 1992, 61(1): 1-10.
doi: 10.1016/0006-3207(92)91201-3 |
[40] |
Rosauer D, Laffan S W, Crisp M D, et al. Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology, 2009, 18(19): 4061-4072.
doi: 10.1111/j.1365-294X.2009.04311.x pmid: 19754516 |
[41] |
Mishler B D, Knerr N, Gonzalez-Orozco C E, et al. Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications, 2014, 5: 4473. DOI: 10.1038/ncomms5473.
doi: 10.1038/ncomms5473 pmid: 25034856 |
[42] | Tang Yancheng, Li Liangqian. The phytogeography of Caprifoliaceae s. str. with its implications for understanding eastern Asiatic flora. Acta Phytotaxonomica Sinica, 1994, 32(3): 197-218. |
[ 汤彦承, 李良千. 忍冬科(狭义)植物地理及其对认识东亚植物区系的意义. 植物分类学报, 1994, 32(3): 197-218.] | |
[43] |
Chen Y S, Deng T, Zhou Z, et al. Is the East Asian flora ancient or not? National Science Review, 2018, 5(6): 920-932.
doi: 10.1093/nsr/nwx156 |
[44] |
Lu L M, Mao L F, Yang T, et al. Evolutionary history of the angiosperm flora of China. Nature, 2018, 554: 234-238.
doi: 10.1038/nature25485 |
[45] |
Zhang X X, Ye J F, Laffan S W, et al. Spatial phylogenetics of the Chinese angiosperm flora provides insights into endemism and conservation. Journal of Integrative Plant Biology, 2021. DOI: 10.1111/jipb.13189.
doi: 10.1111/jipb.13189 |
[46] | Editorial Committee of State Report on Biodiversity of China. State Report on Biodiversity of China. Beijing: China Science Environmental Press, 1998. |
[中国生物多样性国情研究报告编写组. 中国生物多样性国情研究报告. 北京: 中国环境科学出版社, 1998.] | |
[47] |
Bai W N, Wang W T, Zhang D Y. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytologist, 2016, 209(4): 1757-1772.
doi: 10.1111/nph.2016.209.issue-4 |
[48] | Engler A, Diels L. Syllabus der Pflanzenfamilien. Berlin: Gebrüder Borntraeger, 1936. |
[49] | Handel-Mazzetti H. Die Pflanzengeographische Gliederung und Stellung Chinas. Botanische Jahrbücher, 1931, 64: 309-323. |
[50] | Takhtajan A. The floristic regions of the world. Leningrad: Academy of Sciences of the USSR, 1978. |
[51] | Wu Zhengyi. On the regionalization of Chinese flora. Acta Botanica Yunnanica, 1979, 1: 21-22. |
[ 吴征镒. 论中国植物区系的分区问题. 云南植物研究, 1979, 1: 21-22.] | |
[52] | Wu Zhengyi, Sun Hang, Zhou Zhekun, et al. Floristics of Seed Plants from China. Beijing: Science Press, 2011. |
[ 吴征镒, 孙航, 周浙昆, 等. 中国种子植物区系地理. 北京: 科学出版社, 2011.] | |
[53] |
González-Orozco C E, Ebach M C, Laffan S W, et al. Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. PLOS ONE, 2014, 9: e92558. DOI: 10.1371/journal.pone.0092558.
doi: 10.1371/journal.pone.0092558 |
[54] |
He J K, Kreft H, Gao E H, et al. Patterns and drivers of zoogeographical regions of terrestrial vertebrates in China. Journal of Biogeography, 2017, 44(5): 1172-1184.
doi: 10.1111/jbi.2017.44.issue-5 |
[55] |
Zhang M G, Slik J W, Ma K P. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Scientific Reports, 2016, 6: 22400. DOI: 10.1038/srep22400.
doi: 10.1038/srep22400 |
[56] |
Sauquet H. A practical guide to molecular dating. Comptes Rendus Palevol, 2013, 12(6): 355-367.
doi: 10.1016/j.crpv.2013.07.003 |
[57] |
Ye J F, Lu L M, Liu B, et al. Phylogenetic delineation of regional biota: A case study of the Chinese flora. Molecular Phylogenetics and Evolution, 2019, 135: 222-229.
doi: 10.1016/j.ympev.2019.03.011 |
[58] |
Su X Y, Shrestha N, Xu X T, et al. Phylogenetic conservatism and biogeographic affinity influence woody plant species richness-climate relationships in eastern Eurasia. Ecography, 2020, 43: 1027-1040.
doi: 10.1111/ecog.2020.v43.i7 |
[59] |
Wang Z H, Fang J Y, Tang Z Y, et al. Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants. Ecography, 2012, 35(12): 1124-1133.
doi: 10.1111/j.1600-0587.2011.06781.x |
[60] |
Xu X, Zhang H Y, Luo J, et al. Area-corrected species richness patterns of vascular plants along a tropical elevational gradient. Journal of Mountain Science, 2017, 14(4): 694-704.
doi: 10.1007/s11629-016-3894-6 |
[61] |
Shen Zehao, Yang Mingzheng, Feng Jianmeng, et al. Geographic patterns of alpine flora in China in relation to environmental and spatial factors. Biodiversity Science, 2017, 25(2): 182-194.
doi: 10.17520/biods.2017014 |
[ 沈泽昊, 杨明正, 冯建孟, 等. 中国高山植物区系地理格局与环境和空间因素的关系. 生物多样性, 2017, 25(2): 182-194.] | |
[62] |
Du Y J, Mao L F, Queenborough S A, et al. Macro-scale variation and environmental predictors of flowering and fruiting phenology in the Chinese angiosperm flora. Journal of Biogeography, 2020, 47(11): 2303. DOI: 10.1111/jbi.13938.
doi: 10.1111/jbi.13938 |
[63] |
Mao L F, Swenson N G, Sui X H, et al. The geographic and climatic distribution of plant height diversity for 19000 angiosperms in China. Biodiversity and Conservation, 2020, 29(2): 487-502.
doi: 10.1007/s10531-019-01895-5 |
[64] | Leng Shuying, Li Xinrong, Li Yan, et al. Recent progress in biogeography in China. Acta Geographica Sinica, 2009, 64(9): 1039-1047. |
[ 冷疏影, 李新荣, 李彦, 等. 我国生物地理学研究进展. 地理学报, 2009, 64(9): 1039-1047.] | |
[65] | Zhang Sufang, Ma Li. Progress on eco-geographical regionalization researches in China. Journal of Capital Normal University (Natural Science Edition), 2013, 34(4): 64-68. |
[ 张素芳, 马礼. 浅谈中国生态地理区划研究进展. 首都师范大学学报(自然科学版), 2013, 34(4): 64-68.] | |
[66] |
Carruthers T, Scotland R W. Insights from empirical analyses and simulations on using multiple fossil calibrations with relaxed clocks to estimate divergence times. Molecular Biology and Evolution, 2020, 37(5): 1508-1529.
doi: 10.1093/molbev/msz310 pmid: 31899514 |
[67] |
Herendeen P S, Friis E M, Pedersen K R, et al. Palaeobotanical redux: Revisiting the age of the angiosperms. Nature Plants, 2017, 3: 17015. DOI: 10.1038/nplants.2017.15.
doi: 10.1038/nplants.2017.15 pmid: 28260783 |
[68] |
Fu Q, Diez J B, Pole M K, et al. An unexpected noncarpellate epigynous flower from the Jurassic of China. eLife, 2018, 7. DOI: 10.7554/eLife.38827.
doi: 10.7554/eLife.38827 |
[69] |
Sokoloff D D, Remizowa M V, El E S, et al. Supposed Jurassic angiosperms lack pentamery, an important angiosperm-specific feature. New Phytologist, 2020, 228(2): 420-426.
doi: 10.1111/nph.v228.2 |
[70] |
Li H T, Yi T S, Gao L M, et al. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants, 2019, 5(5): 461-470.
doi: 10.1038/s41477-019-0421-0 |
[71] |
Qian H. Biases in assessing the evolutionary history of the angiosperm flora of China. Journal of Biogeography, 2019, 46(5): 1096-1099.
doi: 10.1111/jbi.2019.46.issue-5 |
[72] |
Lu L M, Hu H H, Peng D X, et al. Noise does not equal bias in assessing the evolutionary history of the angiosperm flora of China: A response to Qian (2019). Journal of Biogeography, 2020, 47(10): 2286-2291.
doi: 10.1111/jbi.v47.10 |
[1] | 龚胜生, 王无为, 杨林生, 柴彦威, 周素红, 黄蕾, 王兰, 程杨, 葛淼, 罗勇军. 地理学参与健康中国建设的重点领域与行动建议[J]. 地理学报, 2022, 77(8): 1851-1872. |
[2] | 王小华, 杨玉琪, 罗新雨, 温涛. 中国经济高质量发展的空间关联网络及其作用机制[J]. 地理学报, 2022, 77(8): 1920-1936. |
[3] | 陈舒婷, 李裕瑞, 潘玮, 王武林, 金凤君. 中国县域陆路交通优势度格局演化及经济效应[J]. 地理学报, 2022, 77(8): 1937-1952. |
[4] | 林志慧, 陈瑛, 刘宪锋, 马耀峰. 中国入境旅游城市合作网络时空格局及驱动因素[J]. 地理学报, 2022, 77(8): 2034-2049. |
[5] | 李晓玲, 刘志高, 谭爽, 修春亮, 贺红士. 中国黑龙江省与俄远东跨境经济合作空间组织模式的演变[J]. 地理学报, 2022, 77(8): 2083-2096. |
[6] | 李小建. 中国经济地理思想的历史演变及发展走向[J]. 地理学报, 2022, 77(8): 1873-1891. |
[7] | 田浩, 刘琳, 张正勇, 陈泓瑾, 张雪莹, 王统霞, 康紫薇. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729. |
[8] | 孙三百, 张青萍, 李冉, 张可云. 中国地区收入与净财富不平等的演变路径识别[J]. 地理学报, 2022, 77(6): 1411-1429. |
[9] | 吴思栩, 孙斌栋, 张婷麟. 互联网对中国城市内部就业分布的动态影响[J]. 地理学报, 2022, 77(6): 1446-1460. |
[10] | 刘云刚, 王韬. 中国政治地理学研究进展评述[J]. 地理学报, 2022, 77(6): 1506-1517. |
[11] | 饶志国, 秦倩倩, 魏士凯, 郭海春, 李云霞. 全新世温度研究回顾及对历史人地关系的启示[J]. 地理学报, 2022, 77(5): 1169-1180. |
[12] | 匡文慧, 张树文, 杜国明, 颜长珍, 吴世新, 李仁东, 陆灯盛, 潘涛, 宁静, 郭长庆, 董金玮, 包玉海, 迟文峰, 窦银银, 侯亚丽, 尹哲睿, 常丽萍, 杨久春, 谢家丽, 邱娟, 张汉松, 张宇博, 杨仕琪, 萨日盖, 刘纪远. 2015—2020年中国土地利用变化遥感制图及时空特征分析[J]. 地理学报, 2022, 77(5): 1056-1071. |
[13] | 李郇, 许伟攀, 黄耀福, 陈浩辉, 秦小珍, 李颖, 邓明亮, 姜俊浩, 秦雅雯. 基于遥感解译的中国农房空间分布特征分析[J]. 地理学报, 2022, 77(4): 835-851. |
[14] | 王秀伟, 李晓军. 中国乡村旅游重点村的空间特征与影响因素[J]. 地理学报, 2022, 77(4): 900-917. |
[15] | 刘长生, 陈昀, 简玉峰, 董瑞甜. 中国旅游产业发展间接就业带动能力测算及其时空差异[J]. 地理学报, 2022, 77(4): 918-935. |