[1] |
Maraseni T N, Pandey S S. Can vegetation types work as an indicator of soil organic carbon? An insight from native vegetations in Nepal. Ecological Indicators, 2014, 46: 315-322.
doi: 10.1016/j.ecolind.2014.06.038
|
[2] |
Chen L F, He Z B, Du J, et al. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. CATENA, 2016, 137: 37-43.
doi: 10.1016/j.catena.2015.08.017
|
[3] |
Plante A F, Fernández J M, Haddix M L, et al. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biology and Biochemistry, 2011, 43: 1051-1058.
doi: 10.1016/j.soilbio.2011.01.024
|
[4] |
Stone M M, Plante A F. Relating the biological stability of soil organic matter to energy availability in deep tropical soil profiles. Soil Biology & Biochemistry, 2015, 89: 162-171.
doi: 10.1016/j.soilbio.2015.07.008
|
[5] |
Sollins P, Homann P, Caldwell B A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 1996, 74: 65-105.
doi: 10.1016/S0016-7061(96)00036-5
|
[6] |
Krull E S, Baldock A J, Skjemstad J O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modeling carbon turnover. Functional Plant Biology, 2003, 30(2): 207-222.
doi: 10.1071/FP02085
|
[7] |
Kelleher B P, Simpson A J. Humic substances in soils: Are they really chemically distinct? Environmental Science & Technology, 2006, 40: 4605-4611.
doi: 10.1021/es0608085
|
[8] |
Lehmann J, Solomon D, Kinyangi J, et al. Spatial complexity of soil organic matter forms at nanometre scales. Nature Geoscience, 2008, 1: 238-242.
doi: 10.1038/ngeo155
|
[9] |
Dungait J A J, Hopkins D W, Gregory A S, et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 2012, 18(6): 1781-1796.
doi: 10.1111/gcb.2012.18.issue-6
|
[10] |
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature, 2015, 528(7580): 60-68.
doi: 10.1038/nature16069
|
[11] |
Jones E, Singh B. Organo-mineral interactions in contrasting soils under natural vegetation. Frontiers in Environmental Science, 2014, 20(2): 382. DOI: 10.3389/fenvs.2014.00002.
doi: 10.3389/fenvs.2014.00002
|
[12] |
Heckman K, Lawrence C R, Harden J W. A sequential selective dissolution method to quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases. Geoderma, 2018, 312: 24-35.
doi: 10.1016/j.geoderma.2017.09.043
|
[13] |
Coward E K, Thompson A T, Plante A F. Iron-mediated mineralogical control of organic matter accumulation in tropical soils. Geoderma, 2017, 306: 206-216.
doi: 10.1016/j.geoderma.2017.07.026
|
[14] |
Mikutta R, Mikutta C, Kalbitz K, et al. Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochimica et Cosmochimica Acta, 2007, 71(10): 2569-2590.
doi: 10.1016/j.gca.2007.03.002
|
[15] |
Schneider M P W, Scheel T, Mikutta R, et al. Sorptive stabilization of organic matter by amorphous Al hydroxide. Geochimica et Cosmochimica Acta, 2010, 74(5): 1606-1619.
doi: 10.1016/j.gca.2009.12.017
|
[16] |
Chen C, Hall S J, Coward E, et al. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications, 2020, 11(1): 2255. DOI: 10.1038/s41467-020-16071-5.
doi: 10.1038/s41467-020-16071-5
|
[17] |
Wagai R, Kajiura M, Asano M. Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: Organo-metallic glue hypothesis. Soil, 2020, 6(2): 597-627.
doi: 10.5194/soil-6-597-2020
|
[18] |
Trumbore S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications, 2000, 10(2): 399-411.
doi: 10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
|
[19] |
Masiello C A, Chadwick O A, Southon J, et al. Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochemical Cycles, 2004, 18(4). DOI: 10.1029/2004GB002219.
doi: 10.1029/2004GB002219
|
[20] |
Rasmussen C, Torn M A, Southard R J. Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Science Society of America Journal, 2005, 69(6): 1711-1721.
doi: 10.2136/sssaj2005.0040
|
[21] |
Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry, 2006, 77(1): 25-56.
doi: 10.1007/s10533-005-0712-6
|
[22] |
Wagai R, Mayer L M, Kitayama K, et al. Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis. Biogeochemistry, 2013, 112: 95-109.
doi: 10.1007/s10533-011-9652-5
|
[23] |
Lawrence C R, Harden J W, Xu X M, et al. Long-term controls on soil organic carbon with depth and time: A case study from the Cowlitz River Chronosequence, WA, USA. Geoderma, 2015, 247/248: 73-87.
doi: 10.1016/j.geoderma.2015.02.005
|
[24] |
Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436.
doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
|
[25] |
Kang Chengfang, Gong Yuanbo, Che Mingxuan, et al. Seasonal dynamic of soil organic carbon mineralization for alpine shrub meadow at different elevation, western Sichuan. Acta Ecological Sinica, 2020, 40(4): 244-252.
|
|
[ 康成芳, 宫渊波, 车明轩, 等. 川西高寒山地灌丛草甸不同海拔土壤有机碳矿化的季节动态. 生态学报, 2020, 40(4): 244-252.]
|
[26] |
Kang Chengfang, Gong Yuanbo, Che Mingxuan, et al. Mineralization characteristics of soil carbon of alpine shrub meadow at different elevations in western Sichuan. Chinese Journal of Applied and Environmental Biology, 2019, 25(5): 1030-1035.
|
|
[ 康成芳, 宫渊波, 车明轩, 等. 川西高寒山地灌丛草甸不同海拔土壤碳矿化特征. 应用与环境生物学报, 2019, 25(5): 1030-1035.]
|
[27] |
Du Kai, Kang Yukun, Zhang Degang, et al. Effects of different grazing patterns on organic carbon and nitrogen pools in alpine meadow in the Qilian Mountains. Acta Agrestia Sinica, 2020, 28(5): 1412-1420.
|
|
[ 杜凯, 康宇坤, 张德罡, 等. 不同放牧方式对祁连山高寒草甸有机碳、氮库的影响. 草地学报, 2020, 28(5): 1412-1420.]
|
[28] |
Meng Cheng, Niu Shuli, Chang Wenjing, et al. Effects of warming and clipping on soil respiration and its components in an alpine meadow. Acta Ecological Sinica, 2020, 40(18): 150-160.
|
|
[ 蒙程, 牛书丽, 常文静, 等. 增温和刈割对高寒草甸土壤呼吸及其组分的影响. 生态学报, 2020, 40(18): 150-160.]
|
[29] |
Mehra O P, Jackson M L. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 1960, 7: 313-317.
|
[30] |
Holmgren G G. A rapid citrate-dithionite extractable iron procedure. Soil Science Society of America Journal, 1967, 31(2): 210-211.
doi: 10.2136/sssaj1967.03615995003100020020x
|
[31] |
Filimonova S V, Knicker H, Kogel-Knabner I. Soil micro- and mesopores studied by N2 adsorption and 129Xe NMR of adsorbed xenon. Geoderma, 2006, 130: 218-228.
doi: 10.1016/j.geoderma.2005.01.018
|
[32] |
Borggaard O K. Dissolution of poorly crystalline iron oxides in soils by EDTA and oxalate. Zeitschrift für Pflanzenernahrung und Bodenkunde, 1992, 155(5): 431-436.
doi: 10.1002/jpln.v155:5
|
[33] |
Chao T T, Zhou L Y. Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Science Society of America Journal, 1983, 47(2): 225-232.
doi: 10.2136/sssaj1983.03615995004700020010x
|
[34] |
Loveland P J, Digby P. The extraction of Fe and Al by 0.1 M pyrophosphate solutions: A comparison of some techniques. Journal of Soil Science, 1984, 35(2): 243-250.
doi: 10.1111/ejs.1984.35.issue-2
|
[35] |
Kaiser K, Zech W. Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction. Soil Science, 1996, 161(7): 452-458.
doi: 10.1097/00010694-199607000-00005
|
[36] |
Schuppli P A, Ross G J, McKeague J A. The effective removal of suspended materials from pyrophosphate extracts of soils from tropical and temperate regions. Soil Science Society of America Journal, 1983, 47(5): 1026-1032.
doi: 10.2136/sssaj1983.03615995004700050037x
|
[37] |
Wang Liangjian, Li Xianming, Lin Zhiyuan. A discussion on the soil below dark coniferous forests of the high mountains in southwest China. Acta Geographica Sinica, 1995, 50(6): 542-551.
doi: 10.11821/xb199506008
|
|
[ 王良健, 李显明, 林致远. 也论我国西南高山地区暗针叶林下发育的土壤. 地理学报, 1995, 50(6): 542-551.]
|
[38] |
Wagai R, Mayer L M. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimica et Cosmochimica Acta, 2007, 71(1): 25-35.
doi: 10.1016/j.gca.2006.08.047
|
[39] |
Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron. Nature, 2012, 483(7388): 198-200.
doi: 10.1038/nature10855
|
[40] |
Higashi T. Characterization of Al/Fe-humus complexes in dystrandepts through comparison with synthetic forms. Geoderma, 1983, 31(4): 277-288.
doi: 10.1016/0016-7061(83)90041-1
|
[41] |
Kaiser K, Kalbitz K. Cycling downwards - dissolved organic matter in soils. Soil Biology & Biochemistry, 2012, 52: 29-32.
doi: 10.1016/j.soilbio.2012.04.002
|
[42] |
Xiong Guoyan, Zhao Qiguo, Wang Mingzhu. Podzolic soil in the north of Daxing'anling. Acta Pedologica Sinica, 1979, 16(2): 110-126, 205.
|
|
[ 熊国炎, 赵其国, 王明珠. 大兴安岭北部的灰化土. 土壤学报, 1979, 16(2): 110-126, 205.]
|
[43] |
Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56.
doi: 10.1038/nature10386
|
[44] |
Catoni M, D'Amico M E, Zanini E, et al. Effect of pedogenic processes and formation factors on organic matter stabilization in alpine forest soils. Geoderma, 2016, 263: 151-160.
doi: 10.1016/j.geoderma.2015.09.005
|
[45] |
Evans L J, Wilson W G. Extractable Fe, Al, Si and C in B horizons of podzolic and brunisolic soils from Ontario. Canadian. Journal of Soil Science, 1985, 65(3): 489-496.
|