地理学报 ›› 2022, Vol. 77 ›› Issue (1): 79-92.doi: 10.11821/dlxb202201006
薛帆1(), 张晓萍1,2(
), 张橹3, 刘宝元1, 杨勤科4, 易海杰2, 何亮1, 邹亚东1, 贺洁1, 许小明1, 吕渡2
收稿日期:
2021-04-30
修回日期:
2021-11-23
出版日期:
2022-01-25
发布日期:
2022-03-25
通讯作者:
张晓萍(1971-), 女, 河南焦作人, 博士, 研究员, 研究方向为土地利用变化及水土保持。E-mail: zhangxp@ms.iswc.ac.cn作者简介:
薛帆(1997-), 女, 山西太原人, 硕士生, 研究方向为水土保持及生态水文。E-mail: xf1226@nwafu.edu.cn
基金资助:
XUE Fan1(), ZHANG Xiaoping1,2(
), ZHANG Lu3, LIU Baoyuan1, YANG Qinke4, YI Haijie2, HE Liang1, ZOU Yadong1, HE Jie1, XU Xiaoming1, LYU Du2
Received:
2021-04-30
Revised:
2021-11-23
Published:
2022-01-25
Online:
2022-03-25
Supported by:
摘要:
全球气候变化及人类活动深刻影响了区域水文过程,进行水沙变化归因识别对流域生态保护和高质量发展尤为重要。基于Budyko假设和分形理论,采用弹性系数法,对北洛河流域上(丘陵沟壑区)、中(土石山林—高塬沟壑区)、下游(渭北旱塬农区)3种不同地貌和植被类型区1959—2019年的水、沙通量变化进行归因分析。结果表明,北洛河上、中、下游径流量均显著减少,由20世纪60年代的35 mm、32 mm、34 mm,减少到21世纪10年代的19 mm、24 mm、6 mm,60 a减少率分别为0.3 mm a-1、0.2 mm a-1、0.4 mm a-1。上游输沙量极显著减少,中游降低趋势不显著,下游显著减少,由20世纪60年代的99×106 t、8×106 t、3×106 t,减少到21世纪10年代的10×106 t、3×106 t、0.3×106 t,60 a减少率分别为1.5×106 t a-1、0.04×106 t a-1、0.1×106 t a-1。20世纪70年代以来,上游径流变化逐渐受人类活动影响,且影响程度逐渐增强,21世纪10年代人类活动贡献率达66.3%;气候变化是中游径流变化的主控因子,21世纪10年代降雨和潜在蒸散发的贡献率分别为77.0%和20.2%;下游径流减少主要为人类活动影响,21世纪10年代其贡献率为64.3%。对比20世纪60年代流域输沙量变化始终受人类活动主导,21世纪10年代人类活动对上、中、下游输沙量减少的贡献率分别为80.7%、59.2%和92.7%。上游人类活动对输沙量减少的贡献中,退耕还林等沟坡措施和沟道工程措施分别为39.0%、42.7%,中、下游人类活动贡献的估算结果反映出高植被覆盖区和农区汲水灌溉对区域水、沙的影响特征。
薛帆, 张晓萍, 张橹, 刘宝元, 杨勤科, 易海杰, 何亮, 邹亚东, 贺洁, 许小明, 吕渡. 基于Budyko假设和分形理论的水沙变化归因识别——以北洛河流域为例[J]. 地理学报, 2022, 77(1): 79-92.
XUE Fan, ZHANG Xiaoping, ZHANG Lu, LIU Baoyuan, YANG Qinke, YI Haijie, HE Liang, ZOU Yadong, HE Jie, XU Xiaoming, LYU Du. Attribution recognition of streamflow and sediment changes based on the Budyko hypothesis and fractal theory: A case study in the Beiluo River Basin[J]. Acta Geographica Sinica, 2022, 77(1): 79-92.
表1
1959—2019年流域自然概况、多年均水文要素及年变化趋势统计特征
流域区间 | 面积a(km2) | 降雨量b (mm) | 温度b (℃) | 潜在蒸发b(mm) | 径流深c (mm) | 输沙量c (106 t) | 平均含沙量c(kg m-3) | 林草植被盖度[ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1970年 | 1980年 | 1990年 | 2000年 | 2010年 | 2019年 | ||||||||
上游 | 7325 | 466 (NS; -) | 9.3 (NS; +) | 951 (NS; +) | 35, 19 (***; -0.3) | 99, 10 (***; -1.5) | 37, 7 (***; -5) | 59.9 | 59.2 | 64.9 | 78.7 | 81.3 | 81.2 |
中游 | 9855 | 536 (NS; -) | 9.8 (NS; +) | 997 (NS; +) | 32, 24 (***; -0.2) | 8, 3 (NS;-0.04) | 3, 1 (NS;-0.02) | 77.6 | 76.6 | 76.2 | 81.8 | 85.3 | 89.9 |
下游 | 8465 | 565 (NS; -) | 10.5 (NS; +) | 1020 (NS; +) | 34,6 (***; -0.4) | 2, 0.3 (**; -0.1) | 1, 0.5 (NS; -0.2) | 53.0 | 53.6 | 52.1 | 55.3 | 61.1 | 62.5 |
表2
1959—2019年北洛河流域各区间水文—气候特征值
区间 | 时期 | 降雨量(mm) | 径流深(mm) | 潜在蒸散发(mm) | Φ | ω | 弹性系数 | ||
---|---|---|---|---|---|---|---|---|---|
εP | | εω | |||||||
上游 | 1960s | 519.9 | 35.0 | 945.9 | 1.8 | 3.29 | 2.72 | -1.72 | -0.79 |
1970s | 455.2 | 33.7 | 971.1 | 2.1 | 3.27 | 2.77 | -1.77 | -0.83 | |
1980s | 448.2 | 29.9 | 915.0 | 2.0 | 3.68 | 2.78 | -1.78 | -0.83 | |
1990s | 441.9 | 38.0 | 937.2 | 2.1 | 3.22 | 2.77 | 1.77 | -0.82 | |
2000s | 454.5 | 22.6 | 952.8 | 2.1 | 3.88 | 2.80 | -1.80 | -0.85 | |
2010s | 506.4 | 18.5 | 962.4 | 1.9 | 4.11 | 2.78 | -1.77 | -0.82 | |
中游 | 1960s | 616.9 | 31.9 | 977.0 | 1.6 | 3.47 | 2.68 | -1.68 | -0.77 |
1970s | 574.2 | 19.4 | 1004.0 | 1.8 | 3.62 | 2.73 | -1.73 | -0.80 | |
1980s | 590.3 | 23.2 | 929.7 | 1.6 | 3.91 | 2.71 | 1.71 | -0.79 | |
1990s | 528.4 | 19.9 | 984.6 | 1.9 | 3.23 | 2.73 | -1.73 | -0.80 | |
2000s | 570.0 | 16.8 | 1004.8 | 1.8 | 3.76 | 2.74 | -1.74 | -0.81 | |
2010s | 588.4 | 24.4 | 995.9 | 1.7 | 3.49 | 2.71 | -1.71 | -0.79 | |
下游 | 1960s | 665.7 | 34.4 | 1007.5 | 1.5 | 3.69 | 2.68 | -1.68 | -0.77 |
1970s | 618.6 | 18.1 | 1050.2 | 1.7 | 3.95 | 2.74 | -1.74 | -0.81 | |
1980s | 640.9 | 29.6 | 963.8 | 1.5 | 3.91 | 2.69 | -1.69 | -0.78 | |
1990s | 566.5 | 12.4 | 1045.1 | 1.9 | 3.92 | 2.76 | -1.76 | -0.82 | |
2000s | 606.9 | 19.9 | 1050.0 | 1.7 | 4.69 | 2.78 | -1.78 | -0.84 | |
2010s | 608.0 | 6.0 | 1005.6 | 1.7 | 5.66 | 2.80 | -1.80 | -0.85 |
表3
1970s—2010s时期北洛河流域各区间输沙量弹性系数
区间 | 时期 | 输沙模数减少量(t/(km2 a)) | 输沙弹性系数 | ||||
---|---|---|---|---|---|---|---|
ηR | ηωc | ηP | | ηωR | |||
上游 | 1970s | 3462 | 0.01 | 0.03 | 0.02 | -0.01 | -0.03 |
1980s | 7130 | 0.02 | 0.02 | 0.05 | -0.03 | -0.02 | |
1990s | 1952 | -8.0 | 3.0 | -2.0 | 1.0 | 3.0 | |
2000s | 10376 | 2.0 | 1.0 | 5.0 | -3.0 | -6.0 | |
2010s | 12296 | 2.0 | 5.0 | 5.0 | -3.0 | -5.0 | |
中游 | 1970s | 2251 | 0.04 | 0.01 | 0.10 | -0.06 | -0.03 |
1980s | 4040 | 0.06 | 0.01 | 0.16 | -0.10 | -0.05 | |
1990s | 1149 | -0.02 | 0.01 | -0.07 | 0.04 | 0.02 | |
2000s | 5163 | 0.05 | 0.01 | 0.13 | -0.08 | -0.04 | |
2010s | 6360 | 0.06 | 0.01 | 0.15 | -0.10 | -0.04 | |
下游 | 1970s | 838 | 0.004 | 0.55 | 0.01 | -0.01 | -0.003 |
1980s | 2097 | 0.01 | 0.08 | 0.02 | -0.01 | -0.01 | |
1990s | 1807 | 0.01 | 0.15 | 0.03 | -0.02 | -0.01 | |
2000s | 3508 | 0.02 | 0.01 | 0.04 | -0.03 | -0.01 | |
2010s | 4252 | 0.02 | 0.06 | 0.05 | -0.03 | -0.01 |
[1] |
Lin H. Earth's critical zone and hydropedology: Concepts, characteristics, and advances. Hydrology and Earth System Sciences, 2010, 14(1): 25-45.
doi: 10.5194/hess-14-25-2010 |
[2] |
Zhu Y G, Gillings M, Simonet P, et al. Human dissemination of genes and microorganisms in Earth's critical zone. Global Change Biology, 2018, 24(4): 1488-1499.
doi: 10.1111/gcb.2018.24.issue-4 |
[3] |
Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans. The Journal of Geology, 1983, 91(1): 1-21.
doi: 10.1086/628741 |
[4] | Meade R H, Moody J A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940-2007. Hydrological Processes, 2010, 24(1): 35-49. |
[5] |
Yang S L, Xu K H, Milliman J D, et al. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Scientific Reports, 2015, 5: 12581. DOI: 10.1038/srep12581.
doi: 10.1038/srep12581 pmid: 26206169 |
[6] | Liu Xiaoyan. Causes of Sharp Decrease of Streamflowr and Sediment in the Yellow River in Recent Years. Beijing: Science Press, 2016. |
[ 刘晓燕. 黄河近年水沙锐减成因. 北京: 科学出版社, 2016.] | |
[7] | Hu Chunhong, Zhang Xiaoming. Several key questions in the researches of runoff and sediment changes and trend predictions in the Yellow River. Journal of Hydraulic Engineering, 2018, 49(9): 1028-1039. |
[ 胡春宏, 张晓明. 论黄河水沙变化趋势预测研究的若干问题. 水利学报, 2018, 49(9): 1028-1039.] | |
[8] | Liu Baoyuan. Space-Time Map of Streamflow and Sediment in the Yellow River (The Second Edition). Beijing: Science Press, 2019. |
[ 刘宝元. 黄河水沙时空图谱 (第二版). 北京: 科学出版社, 2019.] | |
[9] |
Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017, 45(1): 223-243.
doi: 10.1146/earth.2017.45.issue-1 |
[10] |
Wagener T, Sivapalan M, Troch P A, et al. The future of hydrology: An evolving science for a changing world. Water Resources Research, 2010, 46(5): W05301. DOI: 10.1029/2009WR008906.
doi: 10.1029/2009WR008906 |
[11] |
Devia G K, Ganasri B P, Dwarakish G S. A review on hydrological models. Aquatic Procedia, 2015, 4: 1001-1007.
doi: 10.1016/j.aqpro.2015.02.126 |
[12] |
Wang D B Hejazi M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resources Research, 2011, 47(10): W00J12. DOI: 10.1029/2010WR010283.
doi: 10.1029/2010WR010283 |
[13] |
Harman C, Troch P A. What makes Darwinian hydrology "Darwinian"? Asking a different kind of question about landscapes. Hydrology and Earth System Sciences, 2014, 18(2): 417-433.
doi: 10.5194/hess-18-417-2014 |
[14] | Ran Dachuan, Liu Bin, Fu Liangyong, et al. Discussion on the method of double cumulative curve to calculate the benefit of runoff and sediment reduction in soil and water conservation. Yellow River, 1996(6): 24-25. |
[ 冉大川, 刘斌, 付良勇, 等. 双累积曲线计算水土保持减水减沙效益方法探讨. 人民黄河, 1996(6): 24-25.] | |
[15] | Zhang Shengli, Yu Yiming, Yao Wenyi, et al. Calculation Method of Benefit on Reduction of Water and Sediment through Soil and Water Conservation Measures. Beijing: China Environmental Science Press, 1994. |
[ 张胜利, 于一鸣, 姚文艺, 等. 水土保持减水减沙效益计算方法. 北京: 中国环境科学出版社, 1994.] | |
[16] |
Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3): 701-708.
doi: 10.1029/2000WR900325 |
[17] |
Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 2016, 9(1): 38-41.
doi: 10.1038/ngeo2602 |
[18] |
Zhang J J, Gao G Y, Fu B J, et al. Formulating an elasticity approach to quantify the effects of climate variability and ecological restoration on sediment discharge change in the Loess Plateau, China. Water Resources Research, 2019, 55(11): 9604-9622.
doi: 10.1029/2019WR025840 |
[19] |
Arnold J G, Allen P M. Estimating hydrologic budgets for three illinois watersheds. Journal of Hydrology, 1996, 176(1): 57-77.
doi: 10.1016/0022-1694(95)02782-3 |
[20] | Laflen J M, Lane L J, Foster G R. WEPP: A new generation of erosion prediction technology. Journal of Soil & Water Conservation, 1991, 46(1): 34-38. |
[21] | Zhao Renjun. Watershed Hydrological Simulation: Xin'anjiang Model and Shanbei Model. Beijing: Water Resources and Electric Power Press, 1984. |
[ 赵人俊. 流域水文模拟: 新安江模型与陕北模型. 北京: 水利电力出版社, 1984.] | |
[22] |
Serpa D, Nunes J P, Santos J, et al. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Science of the Total Environment, 2015, 538: 64-77.
doi: 10.1016/j.scitotenv.2015.08.033 |
[23] |
Wang H J, Yang Z S, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities. Global and Planetary Change, 2007, 57(3/4): 331-354.
doi: 10.1016/j.gloplacha.2007.01.003 |
[24] | Zhou Decheng, Zhao Shuqing, Zhu Chao. Impacts of the sloping land conversion program on the land use/cover change in the Loess Plateau: A case study in Ansai county of Shaanxi province, China. Journal of Natural Resources, 2011, 26(11): 1866-1878. |
[ 周德成, 赵淑清, 朱超. 退耕还林工程对黄土高原土地利用/覆被变化的影响: 以陕西省安塞县为例. 自然资源学报, 2011, 26(11): 1866-1878.] | |
[25] |
Zhang B Q, He C S. A modified water demand estimation method for drought identification over arid and semiarid regions. Agricultural and Forest Meteorology, 2016, 230/231: 58-66.
doi: 10.1016/j.agrformet.2015.11.015 |
[26] |
Wu J W, Miao C Y, Duan Q Y, et al. Dynamics and attributions of baseflow in the semiarid Loess Plateau. Journal of Geophysical Research: Atmospheres, 2019, 124(7): 3684-3701.
doi: 10.1029/2018JD029775 |
[27] | Liu Erjia, Zhang Xiaoping, Xie Mingli, et al. Hydrologic responses to vegetation restoration and their driving forces in a catchment in the loess hilly-gully area: A case study in the upper Beiluo River. Acta Ecologica Sinica, 2015, 35(3): 622-629. |
[ 刘二佳, 张晓萍, 谢名礼, 等. 生态恢复对流域水沙演变趋势的影响: 以北洛河上游为例. 生态学报, 2015, 35(3): 622-629.] | |
[28] |
Zhao G J, Mu X M, Jiao J Y, et al. Assessing response of sediment load variation to climate change and human activities with six different approaches. Science of the Total Environment, 2018, 639: 773-784.
doi: 10.1016/j.scitotenv.2018.05.154 |
[29] |
Yan R, Zhang X P, Yan S J, et al. Spatial patterns of hydrological responses to land use/cover change in a catchment on the Loess Plateau, China. Ecological Indicators, 2017, 92: 151-160.
doi: 10.1016/j.ecolind.2017.04.013 |
[30] |
Zhang J J, Zhang X P, Li R, et al. Did streamflow or suspended sediment concentration changes reduce sediment load in the middle reaches of the Yellow River? Journal of Hydrology, 2017, 546: 357-369.
doi: 10.1016/j.jhydrol.2017.01.002 |
[31] | He Liang, Lyu Du, Guo Jinwei, et al. Study on vegetation coverage change of Beiluo river basin based on MODIS. Yellow River, 2020, 42(2): 67-71, 76. |
[ 何亮, 吕渡, 郭晋伟, 等. 基于MODIS的北洛河流域植被盖度变化研究. 人民黄河, 2020, 42(2): 67-71, 76.] | |
[32] | Lovejoy S, Schertzer D. The Weather and Climate: Emergent Laws and Multifractal Cascades. London: Cambridge University Press, 2013. |
[33] | Zhang Kun, Lyu Yihe, Fu Bojie, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geographica Sinica, 2020, 75(5): 949-960. |
[ 张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值. 地理学报, 2020, 75(5): 949-960.] | |
[34] |
Liu Xiaoyan, Liu Changming, Dang Suzhen. Effects of rainfall intensity on sediment concentration in loess hilly region of China. Acta Geographica Sinica, 2019, 74(9): 1723-1732.
doi: 10.11821/dlxb201909002 |
[ 刘晓燕, 刘昌明, 党素珍. 黄土丘陵区雨强对水流含沙量的影响. 地理学报, 2019, 74(9): 1723-1732.] | |
[35] | Guo Yaping. Development and benefit analysis of modern muddy water irrigation in the area of Luohui drainage. Ancient and Modern Agriculture, 2009(1): 19-26. |
[ 郭亚萍. 洛惠渠灌区现代引浑淤灌的发展及效益分析. 古今农业, 2009(1): 19-26.] | |
[36] |
Gao Haidong, Liu Han, Jia Lianlian, et al. Attribution analysis of precipitous decrease of sediment loads in the Hekou-Longmen section of Yellow River since 2000. Acta Geographica Sinica, 2019, 74(9): 1745-1757.
doi: 10.11821/dlxb201909004 |
[ 高海东, 刘晗, 贾莲莲, 等. 2000—2017年河龙区间输沙量锐减归因分析. 地理学报, 2019, 74(9): 1745-1757.] | |
[37] |
Xie B N, Jia X X, Qin Z F, et al. Vegetation dynamics and climate change on the Loess Plateau, China: 1982-2011. Regional Environmental Change, 2016, 16(6): 1583-1594.
doi: 10.1007/s10113-015-0881-3 |
[38] | Xin Zhongbao, Xu Jiongxin, Zheng Wei. Climate change and human activities on vegetation coverage on the Loess Plateau effect of change. Science in China Series D: Earth Sciences, 2007, 37(11): 1504-1514. |
[ 信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响. 中国科学D辑: 地球科学, 2007, 37(11): 1504-1514.] | |
[39] | Zheng Mingguo. Partition of reducing sediment for various soil and water conservation measures of Loess Plateau in China based on runoff-sediment relationship. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 173-183. |
[ 郑明国. 基于水沙关系框架的黄土区不同水保措施减沙贡献分割方法. 农业工程学报, 2020, 36(7): 173-183.] | |
[40] |
Pandey G S, Lovejoy S, Schertzer D. Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometres, one day to 75 years. Journal of Hydrology, 1998, 208(1/2): 62-81.
doi: 10.1016/S0022-1694(98)00148-6 |
[1] | 胡胜, 邱海军, 王宁练, 崔一飞, 曹明明, 王家鼎, 王新刚. 地形对黄土高原滑坡的影响[J]. 地理学报, 2021, 76(11): 2697-2709. |
[2] | 赵雪雁, 马平易, 李文青, 杜昱璇. 黄土高原生态系统服务供需关系的时空变化[J]. 地理学报, 2021, 76(11): 2780-2796. |
[3] | 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. |
[4] | 鲁大铭, 杨新军, 石育中, 王子侨. 黄土高原乡村体制转换与转型发展[J]. 地理学报, 2020, 75(2): 348-364. |
[5] | 刘晓燕, 刘昌明, 党素珍. 黄土丘陵区雨强对水流含沙量的影响[J]. 地理学报, 2019, 74(9): 1723-1732. |
[6] | 文琦,施琳娜,马彩虹,王永生. 黄土高原村域多维贫困空间异质性研究——以宁夏彭阳县为例[J]. 地理学报, 2018, 73(10): 1850-1864. |
[7] | 高海东, 庞国伟, 李占斌, 程圣东. 黄土高原植被恢复潜力研究[J]. 地理学报, 2017, 72(5): 863-874. |
[8] | 刘剑宇, 张强, 陈喜, 顾西辉. 气候变化和人类活动对中国地表水文过程影响定量研究[J]. 地理学报, 2016, 71(11): 1875-1885. |
[9] | 高海东, 李占斌, 李鹏, 贾莲莲, 徐国策, 任宗萍, 庞国伟, 赵宾华. 基于土壤侵蚀控制度的黄土高原水土流失治理潜力研究[J]. 地理学报, 2015, 70(9): 1503-1515. |
[10] | 傅伯杰. 地理学综合研究的途径与方法:格局与过程耦合[J]. 地理学报, 2014, 69(8): 1052-1059. |
[11] | 赵鸣飞, 王宇航, 邢开雄, 康慕谊, 刘全儒, 李秋颐, 黄永梅. 黄土高原山地森林群落植物区系特征与地理格局[J]. 地理学报, 2014, 69(7): 916-925. |
[12] | 刘晓燕, 刘昌明, 杨胜天, 金双彦, 高亚军, 高云飞. 基于遥感的黄土高原林草植被变化对河川径流的影响分析[J]. 地理学报, 2014, 69(11): 1595-1603. |
[13] | 高云飞, 郭玉涛, 刘晓燕, 何兴照. 陕北黄河中游淤地坝拦沙功能失效的判断标准[J]. 地理学报, 2014, 69(1): 73-79. |
[14] | 祝士杰, 汤国安, 李发源, 熊礼阳. 基于DEM的黄土高原面积高程积分研究[J]. 地理学报, 2013, 68(7): 921-932. |
[15] | 王小军, 张强, 古璇清. 基于分形理论的灌溉水有效利用系数空间尺度变异[J]. 地理学报, 2012, 67(9): 1201-1212. |