地理学报 ›› 2022, Vol. 77 ›› Issue (1): 51-65.doi: 10.11821/dlxb202201004
收稿日期:
2020-09-11
修回日期:
2021-10-20
出版日期:
2022-01-25
发布日期:
2022-03-25
作者简介:
吴健生(1965-), 男, 湖南新化人, 博士, 教授, 博士生导师, 研究方向为景观生态与土地利用、遥感GIS。E-mail: wujs@pkusz.edu.cn
基金资助:
WU Jiansheng1,2(), HE Haishan1, HU Tian3
Received:
2020-09-11
Revised:
2021-10-20
Published:
2022-01-25
Online:
2022-03-25
Supported by:
摘要:
在中国快速城市化进程中,城市热岛是严重的环境问题之一。探究城市热岛的影响因素,建立与自然因子、社会经济因子、景观形态因子的关联,对解决中国“城市病”,实现可持续发展具有重要的意义。本文首先在全国尺度上基于地表温度“源—汇”景观指数识别地表温度的“源”景观/“汇”景观,在此基础上计算“源—汇”景观贡献度及其效应,分析其时空演变规律;其次,基于空间杜宾模型分析自然因子、社会经济因子和景观形态因子对“源—汇”景观贡献度的影响,结果发现:① 2005—2015年间,可缓解热岛效应的省份冬季较夏季多,冬季“强”和“较弱”景观贡献度比值区域集中分布在中国北部和南部;夏季“强”的“汇”与“源”景观贡献度比值区域集中分布在中国北部地区。② 对于本地因子,景观形态对“源”或“汇”景观贡献度的影响较大,缓解热岛效应将附近小“汇”斑块结合来降低地表温度“汇”景观的离散度;其次,夏季适当在“源”景观里增加相对湿度、并增加其植被覆盖率,严格控制“源”景观和“汇”景观的建筑密度及建筑高度,可达到最佳降温效果。③ 邻域因子中相对湿度和建筑密度的影响更大,景观形态中增加“源”景观的离散度及其边缘密度,或增加“汇”景观集聚度,简化其形状均有利于缓解邻域的热岛效应。
吴健生, 何海珊, 胡甜. 地表温度“源—汇”景观贡献度的影响因素分析[J]. 地理学报, 2022, 77(1): 51-65.
WU Jiansheng, HE Haishan, HU Tian. Analysis of factors influencing the "source-sink" landscape contribution of land surface temperature[J]. Acta Geographica Sinica, 2022, 77(1): 51-65.
表1
数据来源及说明
数据源 | 获取时间 | 数据说明 |
---|---|---|
MOD09反射率数据 | 2005年、2010年、2015年的1月和7月 | 时间分辨率8 d、空间分辨率500 m |
MOD11地表温度数据 | 2005年、2010年、2015年的1月和7月 | 时间分辨率8 d、空间分辨率1 km |
MOD13NDVI数据 | 2005年、2010年、2015年的1月和7月 | 时间分辨30 d、空间分辨率1 km |
MOD16蒸散发数据 | 2005年、2010年、2015年的1月和7月 | 时间分辨率8 d、空间分辨率500 m |
DEM | - | 空间分辨率为30 m |
土地利用数据 | 2005年、2010年、2015年 | 空间分辨率30 m |
LandScan人口密度数据 | 2005年、2010年、2015年 | 空间分辨率1 km |
平均气温、降雨量、相对湿度 | 2005年、2010年、2015年的1月和7月 | 时间分辨率月、空间分辨率1 km |
最高气温、最低气温 | 2005年、2010年、2015年的1月和7月 | 共609个气象站点 |
行政区划数据 | - | 空间投影为Lambert正轴等角圆锥投影 |
电力消费数据 | 2005年、2010年、2015年 | - |
表5
“源—汇”景观贡献度的回归结果
变量 | Ciy_win | Ciy_sum | Cih_win | Cih_sum |
---|---|---|---|---|
P | -0.002 | 0.118 | -0.039 | 0.278 |
RH | 0.382 | -1.540*** | 1.083** | 0.179 |
DVT | -0.692*** | 1.573** | -0.420 | -1.439** |
E | 0.217** | 0.035 | -0.206 | 0.152 |
NDVI | -0.454** | -1.057** | 0.005 | -1.846** |
POP | -0.083 | 0.150* | 0.030 | -0.099 |
NDBI | 0.441*** | -0.247 | 0.283*** | -0.398** |
PD | 0.284** | 0.223 | -0.416*** | -0.348*** |
ED | -0.930*** | -0.489** | 0.362** | 0.747*** |
MESH | 0.173*** | 0.090** | -0.136*** | -0.130*** |
NLSI | -0.224 | -0.113 | 0.231 | 0.331** |
W×P | -0.107 | 0.736* | -0.151 | 0.220 |
W×RH | -1.550** | -0.876 | 3.428** | -1.875 |
W×DVT | 1.012 | -1.231 | -0.530 | 0.473 |
W×E | 0.257 | -0.273** | 1.335 | 0.391** |
W×NDVI | 0.531 | 1.214 | -2.644** | 2.653** |
W×POP | 0.341 | -0.635*** | 0.629 | 0.550** |
W×NDBI | 1.353*** | 1.004** | 0.781** | -1.035** |
W×PD | -0.434 | -0.773** | -1.920*** | -0.946*** |
W×ED | 1.270** | 2.705*** | 0.668 | -0.667* |
W×MESH | -0.350*** | -0.183 | -0.735*** | 0.068 |
W×NLSI | -0.352 | -0.448 | -2.351** | 0.219 |
W×y | 0.109 | -0.217 | -0.098 | -0.303* |
R2 | 0.757 | 0.899 | 0.985 | 0.877 |
Log likelihood | -66.090 | -25.318 | 62.609 | -34.598 |
[1] |
Mirzaei P A, Haghighat F. Approaches to study urban heat island: Abilities and limitations. Building and Environment, 2010, 45: 2192-2201.
doi: 10.1016/j.buildenv.2010.04.001 |
[2] | Shou Yixuan, Zhang Dalin. Research advances in understanding urban heat island effects with some future prospects. Acta Meteorologica Sinica, 2012, 70(3): 338-353. |
[ 寿亦萱, 张大林. 城市热岛效应的研究进展与展望. 气象学报, 2012, 70(3): 338-353.] | |
[3] | Zou Jing, Zeng Hui. Relationships between urban landscape pattern and land surface temperature: A case study of Shenzhen. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(3): 436-444. |
[ 邹婧, 曾辉. 城市地表热环境与景观格局的关系: 以深圳市为例. 北京大学学报(自然科学版), 2017, 53(3): 436-444.] | |
[4] |
Feng Zhangxian, Wang Shijun, Jin Shanhe, et al. Effects of urban morphology and wind conditions on land surface temperature in Changchun. Acta Geographica Sinica, 2019, 74(5): 902-911.
doi: 10.11821/dlxb201905005 |
[ 冯章献, 王士君, 金珊合, 等. 长春市城市形态及风环境对地表温度的影响. 地理学报, 2019, 74(5): 902-911.] | |
[5] |
Chen A L, Yao L, Sun R H, et al. How many metrics are required to identify the effects of the landscape pattern on land surface temperature? Ecological Indicators, 2014, 45: 424-433.
doi: 10.1016/j.ecolind.2014.05.002 |
[6] | Wang Yaobin, Zhao Yonghua, Han Lei, et al. Coupling relationship between landscape pattern and urban heat island effect in Xi'an. Chinese Journal of Applied Ecology, 2017, 28(8): 2621-2628. |
[ 王耀斌, 赵永华, 韩磊, 等. 西安市景观格局与城市热岛效应的耦合关系. 应用生态学报, 2017, 28(8): 2621-2628.] | |
[7] |
Chen Liding, Sun Ranhao, Liu Hailian. Eco-environmental effects of urban landscape pattern changes: Progresses, problems, and perspectives. Acta Ecologica Sinica, 2013, 33(4): 1042-1050.
doi: 10.5846/stxb |
[ 陈利顶, 孙然好, 刘海莲. 城市景观格局演变的生态环境效应研究进展. 生态学报, 2013, 33(4): 1042-1050.] | |
[8] | Chen Liding, Fu Bojie, Xu Jianying, et al. Location-weighted landscape contrast index: A scale independent approach for landscape pattern evaluation based on "Source-Sink" ecological processes. Acta Ecologica Sinica, 2003, 23(11): 2406-2413. |
[ 陈利顶, 傅伯杰, 徐建英, 等. 基于“源—汇”生态过程的景观格局识别方法: 景观空间负荷对比指数. 生态学报. 2003, 23(11): 2406-2413.] | |
[9] | Xiao Rongbo, Ouyang Zhiyun, Li Weifeng, et al. Spatial-temporal distribution and causes of urban heat islands. Journal of the Meteorological Sciences, 2007(2): 230-236. |
[ 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛时空特征及其影响因素. 气象科学, 2007(2): 230-236.] | |
[10] |
Weng Q H, Liu H, Lu D S. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosystems, 2007, 10(2): 203-219.
doi: 10.1007/s11252-007-0020-0 |
[11] | Wang Jiankai, Wang Kaicun, Wang Pucai. Urban heat (or cool) island over Beijing from MODIS land surface temperature. Journal of Remote Sensing, 2007, 11(3): 330-339. |
[ 王建凯, 王开存, 王普才. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析. 遥感学报, 2007, 11(3): 330-339.] | |
[12] | Li Liguang, Liang Zhibing, Wang Hongbo, et al. Urban heat island characteristics in Shenyang under different weather conditions. Transactions of Atmospheric Sciences, 2011, 34(1): 66-73. |
[ 李丽光, 梁志兵, 王宏博, 等. 不同天气条件下沈阳城市热岛特征. 大气科学学报, 2011, 34(1): 66-73.] | |
[13] |
Zhang Yaoguang, Liu Kai, Liu Guichun. The evolvement of the state maritime boundary in South China Sea by maps: China's nine-dotted maritime boundary line in South China Sea. Scientia Geographica Sinica, 2012, 32(9): 1033-1040.
doi: 10.13249/j.cnki.sgs.2012.09.1033 |
[ 张耀光, 刘锴, 刘桂春. 从地图看中国南海海域疆界线的形成与演进. 地理科学, 2012, 32(9): 1033-1040.] | |
[14] | Xu Weixiang, Xu Yanqing. The evaluation of comprehensive competitiveness of coastal ports and spatial evolution of sea port hinterland in China. Economic Geography, 2018, 38(5): 26-35. |
[ 徐维祥, 许言庆. 我国沿海港口综合实力评价与主要港口腹地空间的演变. 经济地理, 2018, 38(5): 26-35.] | |
[15] |
Guo Ziliang, Cui Guofa. Geomorphologic regionalization of China aimed at construction of nature reserve system. Acta Ecologica Sinica, 2013, 33(19): 6264-6276.
doi: 10.5846/stxb |
[ 郭子良, 崔国发. 中国地貌区划系统: 以自然保护区体系建设为目标. 生态学报, 2013, 33(19): 6264-6276.] | |
[16] | Zhang Xiaoxia, Zhao Hui. Nine principles that must be followed in the compilation and publication of maps of China. China Editor, 2011(4): 34-42. |
[ 张小霞, 赵晖. 中国地貌区划系统: 编制出版中国地图必须遵循的九项原则. 中国编辑, 2011(4): 34-42.] | |
[17] | Wang Xia, Zhang Lijun, Qin Yaochen, et al. Spatiotemporal changes of carbon emissions in high-carbon manufacturing industry in China and driving factors. Resources Science, 2020, 42(2): 323-333. |
[ 王霞, 张丽君, 秦耀辰, 等. 中国高碳制造业碳排放时空演变及其驱动因素. 资源科学, 2020, 42(2): 323-333.] | |
[18] |
Feng Z J, Chen W. Environmental regulation, green innovation, and industrial green development: An empirical analysis based on the spatial Durbin model. Sustainability, 2018, 10(1): 223. DOI: 10.1016/j.jclepro.2017.12.034.
doi: 10.1016/j.jclepro.2017.12.034 |
[19] |
Fils S C N, Mimba M E, Dzana J G, et al. TM/ETM+/LDCM images for studying land surface temperature (LST) interplay with impervious surfaces changes over time within the Douala Metropolis, Cameroon. Journal of the Indian Society of Remote Sensing, 2018, 46(1): 131-143.
doi: 10.1007/s12524-017-0677-7 |
[20] |
Liu Haimeng, Fang Chuanglin, Huang Jiejun, et al. The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 2018, 73(1): 177-191.
doi: 10.11821/dlxb201801015 |
[ 刘海猛, 方创琳, 黄解军, 等. 京津冀城市群大气污染的时空特征与影响因素解析. 地理学报, 2018, 73(1): 177-191.] | |
[21] | Qiu J, Turner M G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere, 2015, 6(11): 1-19. |
[22] | Mu Xueqing, Guo Xiangyang, Ming Qingzhong. Temporal and spatial evolutionary characteristics of tourism intensity in the border areas. Economic Geography, 2019, 39(1): 233-240. |
[ 穆学青, 郭向阳, 明庆忠. 边境地区旅游强度时空演化特征分析. 经济地理, 2019, 39(1): 233-240.] | |
[23] |
Rao Y X, Dai J Y, Dai D Y, et al. Effect of urban growth pattern on land surface temperature in China: A multi-scale landscape analysis of 338 cities. Land Use Policy, 2021, 103(1): 105314. DOI: 10.1016/j.landusepol.2021.105314.
doi: 10.1016/j.landusepol.2021.105314 |
[24] | Wang Ju, Yu Anan, Fang Chunsheng. The difficulties and countermeasures of coal consumption controlling under the background of energy revolution strategy: Taking Jilin province with high coal consumption as an example. Economic Review Journal, 2018(9): 51-57. |
[ 王菊, 于阿南, 房春生. 能源革命战略背景下控制煤炭消费的困境与对策: 以高比例煤炭消费的吉林省为例. 经济纵横, 2018(9): 51-57.] | |
[25] | Li X M, Zhou Y Y, Asrar G R, et al. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 2017, 605: 426-435. |
[26] |
Morabito M, Crisci A, Guerri G, et al. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Science of the Total Environment, 2021, 751: 142334. DOI: 10.1016/j.scitotenv.2020.142334.
doi: 10.1016/j.scitotenv.2020.142334 |
[27] |
Schwarz N, Lautenbach S, Seppelt R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment, 2011, 115(12): 3175-3186.
doi: 10.1016/j.rse.2011.07.003 |
[28] |
Peng S S, Piao S L, Ciais P, et al. Surface urban heat island across 419 global big cities. Environmental Science & Technology, 2012, 46(2): 696-703.
doi: 10.1021/es2030438 |
[29] |
Yi S, Liu S G, Yan W D, et al. Influence of landscape features on urban land surface temperature: Scale and neighborhood effects. Science of the Total Environment, 2021, 771: 145381. DOI: 10.1016/j.scitotenv.2021.145381.
doi: 10.1016/j.scitotenv.2021.145381 |
[30] |
Boucher O, Myhre G, Myhre A. Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dynamics, 2004, 22(6): 597-603.
doi: 10.1007/s00382-004-0402-4 |
[31] |
Sheng L, Tang X L, You H Y, et al. Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China. Ecological Indicators, 2017, 72: 738-746.
doi: 10.1016/j.ecolind.2016.09.009 |
[32] | Xiong Ying, Zhang Fang. Thermal environment effects of urban human settlements and influencing factors based on multi-source data: A case study of Changsha city. Acta Geographica Sinica, 2020, 75(11): 2443-2458. |
[ 熊鹰, 章芳. 基于多源数据的长沙市人居热环境效应及其影响因素分析. 地理学报, 2020, 75(11): 2443-2458.] | |
[33] |
Barnett T P, Pierce D W, Hidalgo H G, et al. Human-induced changes in the hydrology of the western United States. Science, 2008, 319(5866): 1080-1083.
doi: 10.1126/science.1152538 pmid: 18239088 |
[34] |
Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 2015, 5(5): 424-430.
doi: 10.1038/nclimate2563 |
[35] |
Rangwala I, Miller J R, Xu M. Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophysical Research Letters, 2009, 36(6). DOI: 10.1029/2009GL037245.
doi: 10.1029/2009GL037245 |
[36] |
Held I M, Soden B J. Robust responses of the hydrological cycle to global warming. Journal of Climate, 2006, 19(21): 5686-5699.
doi: 10.1175/JCLI3990.1 |
[37] |
Meng H, Jing L, Xin H. The influence of underlying surface on land surface temperature: A case study of urban green space in Harbin. Energy Procedia, 2019, 157: 746-751.
doi: 10.1016/j.egypro.2018.11.240 |
[38] |
Cilek M U, Cilek A. Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustainable Cities and Society, 2021, 69: 102877. DOI: 10.1016/j.scs.2021.102877.
doi: 10.1016/j.scs.2021.102877 |
[39] |
Pramanik S, Punia M. Land use/land cover change and surface urban heat island intensity: Source-sink landscape-based study in Delhi, India. Environment, Development and Sustainability, 2020, 22(8): 7331-7356.
doi: 10.1007/s10668-019-00515-0 |
[40] |
Ma Q, Wu J, He C. A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: Spatial scale dependence, temporal variations, and bioclimatic modulation. Landscape Ecology, 2016, 31(5): 1139-1153.
doi: 10.1007/s10980-016-0356-z |
[41] |
Wu X L, Li B X, Li M, et al. Examining the relationship between spatial configurations of urban impervious surfaces and land surface temperature. Chinese Geographical Science, 2019, 29(4): 568-578.
doi: 10.1007/s11769-019-1055-x |
[42] | Shen Zhongjian, Zeng Jian, Liang Chen. Spatial relationship of greenspace landscape pattern with land surface temperature in three cities of southern Fujian. Chinese Journal of Ecology, 2020, 39(4): 1309-1317. |
[ 沈中健, 曾坚, 梁晨. 闽南三市绿地景观格局与地表温度的空间关系. 生态学杂志, 2020, 39(4): 1309-1317.] | |
[43] | Gao Jiancheng, Yin Zekai, Zhang Rui. Spatial and temporal changes of urban thermal landscape pattern in rapid urbanization areas: Taking Tangshan urban built-up area as examples. Arid Land Resources and Environment, 2015, 29(9): 168-173. |
[ 高建成, 尹泽凯, 张睿. 快速城镇化地区热岛景观动态变化研究: 以唐山市建成区为例. 干旱区资源与环境, 2015, 29(9): 168-173.] |
[1] | 龚胜生, 王无为, 杨林生, 柴彦威, 周素红, 黄蕾, 王兰, 程杨, 葛淼, 罗勇军. 地理学参与健康中国建设的重点领域与行动建议[J]. 地理学报, 2022, 77(8): 1851-1872. |
[2] | 王小华, 杨玉琪, 罗新雨, 温涛. 中国经济高质量发展的空间关联网络及其作用机制[J]. 地理学报, 2022, 77(8): 1920-1936. |
[3] | 陈舒婷, 李裕瑞, 潘玮, 王武林, 金凤君. 中国县域陆路交通优势度格局演化及经济效应[J]. 地理学报, 2022, 77(8): 1937-1952. |
[4] | 林志慧, 陈瑛, 刘宪锋, 马耀峰. 中国入境旅游城市合作网络时空格局及驱动因素[J]. 地理学报, 2022, 77(8): 2034-2049. |
[5] | 李晓玲, 刘志高, 谭爽, 修春亮, 贺红士. 中国黑龙江省与俄远东跨境经济合作空间组织模式的演变[J]. 地理学报, 2022, 77(8): 2083-2096. |
[6] | 李小建. 中国经济地理思想的历史演变及发展走向[J]. 地理学报, 2022, 77(8): 1873-1891. |
[7] | 田浩, 刘琳, 张正勇, 陈泓瑾, 张雪莹, 王统霞, 康紫薇. 2001—2020年中国地表温度时空分异及归因分析[J]. 地理学报, 2022, 77(7): 1713-1729. |
[8] | 孙三百, 张青萍, 李冉, 张可云. 中国地区收入与净财富不平等的演变路径识别[J]. 地理学报, 2022, 77(6): 1411-1429. |
[9] | 吴思栩, 孙斌栋, 张婷麟. 互联网对中国城市内部就业分布的动态影响[J]. 地理学报, 2022, 77(6): 1446-1460. |
[10] | 刘云刚, 王韬. 中国政治地理学研究进展评述[J]. 地理学报, 2022, 77(6): 1506-1517. |
[11] | 匡文慧, 张树文, 杜国明, 颜长珍, 吴世新, 李仁东, 陆灯盛, 潘涛, 宁静, 郭长庆, 董金玮, 包玉海, 迟文峰, 窦银银, 侯亚丽, 尹哲睿, 常丽萍, 杨久春, 谢家丽, 邱娟, 张汉松, 张宇博, 杨仕琪, 萨日盖, 刘纪远. 2015—2020年中国土地利用变化遥感制图及时空特征分析[J]. 地理学报, 2022, 77(5): 1056-1071. |
[12] | 饶志国, 秦倩倩, 魏士凯, 郭海春, 李云霞. 全新世温度研究回顾及对历史人地关系的启示[J]. 地理学报, 2022, 77(5): 1169-1180. |
[13] | 李郇, 许伟攀, 黄耀福, 陈浩辉, 秦小珍, 李颖, 邓明亮, 姜俊浩, 秦雅雯. 基于遥感解译的中国农房空间分布特征分析[J]. 地理学报, 2022, 77(4): 835-851. |
[14] | 王秀伟, 李晓军. 中国乡村旅游重点村的空间特征与影响因素[J]. 地理学报, 2022, 77(4): 900-917. |
[15] | 刘长生, 陈昀, 简玉峰, 董瑞甜. 中国旅游产业发展间接就业带动能力测算及其时空差异[J]. 地理学报, 2022, 77(4): 918-935. |