地理学报 ›› 2022, Vol. 77 ›› Issue (1): 35-50.doi: 10.11821/dlxb202201003
刘浩龙1,2(), 周宇1,2, 刘俊3, 戴君虎1,2(
), 葛全胜1,2, 齐晓波1
收稿日期:
2021-01-21
修回日期:
2021-11-11
出版日期:
2022-01-25
发布日期:
2022-03-25
通讯作者:
戴君虎(1968-), 男, 陕西蓝田人, 博士, 研究员, 主要从事物候学和全球变化影响研究。E-mail: daijh@igsnrr.ac.cn作者简介:
刘浩龙(1976-), 男, 江苏连云港人, 博士, 副研究员, 主要从事全球变化与旅游地理研究。E-mail: liuhl@igsnrr.ac.cn
基金资助:
LIU Haolong1,2(), ZHOU Yu1,2, LIU Jun3, DAI Junhu1,2(
), GE Quansheng1,2, QI Xiaobo1
Received:
2021-01-21
Revised:
2021-11-11
Published:
2022-01-25
Online:
2022-03-25
Supported by:
摘要:
北海公园冰上运动是北京传统体育文化遗产的重要组成内容以及冬季休闲旅游的代表性符号,强化其气候变化影响与适应研究,对于应对全球变化的挑战、践行“大力发展冰雪经济”的指示具有重要意义。本文从多源文献中提取分析了其冰场多年启闭日期(间接指示冰层厚15 cm)的变化特征,并结合气温器测数据以及4种气候情景数据(SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5),利用留一交叉验证法探讨了不同温度指标和拟合方程的预测效果差异,进而对未来冰上运动季的变化、潜在影响与适应对策进行分析。结果表明:① 1989—2018年冰上运动季始日、末日和持续长度的均值分别为1月1日、2月5日和36 d,对应的趋势表现为不显著的推迟(1.00 d/10a)、提前(-0.77 d/10a)和延长(1.11 d/10a),时序变化可区分为1989—2000年、2001—2013年和2014—2018年3个阶段。② 冰上运动季始、末日分别对其日期前59 d的日最低温和前94 d的日最高温有较好响应,利用这两个指标和玻尔兹曼函数可更好预测冰上运动季变化。③ 2021—2099年冰上运动季始日、末日和持续长度的均值分别较1989—2018年晚1 d、早1 d和缩短2 d,3个指标变幅一致缩小,对应的0.14 d/10a、-0.21 d/10a和-0.34 d/10a的趋势均达到0.01的显著性水平。④ 未来79 a内冬季两大节庆中元旦冰上运动的适宜性要大于春节,其中春节的适宜性在4种气候情景下相差不大,而元旦的适宜性则在4种情景下有一定差别。⑤ 在相关预估结果上,BCC-CSM2-MR、CanESM-5和UKESM这3种区域气候模式并没有太大差异,而热岛效应影响尚待深入研究。⑥ 为了在气候变暖背景下促进体旅融合消费、保障冰上运动产业高质量发展,运营企业应采取强化游客安全保障、扩展旅游产品谱系、购买冰量保险等全方位主动适应措施,研究者应加强研究气候变化影响的复杂性、改进旅游流的预测效果,而管理部门应大力推动产业风险管理报告的编制,充分重视气候变化风险的动态评估。
刘浩龙, 周宇, 刘俊, 戴君虎, 葛全胜, 齐晓波. 气候变化影响下北海公园冰上运动季的特征与情景模拟[J]. 地理学报, 2022, 77(1): 35-50.
LIU Haolong, ZHOU Yu, LIU Jun, DAI Junhu, GE Quansheng, QI Xiaobo. Characteristics and scenario simulation of the ice-sports season in Beijing Beihai Park under climate change[J]. Acta Geographica Sinica, 2022, 77(1): 35-50.
表1
留一交叉验证法下不同模型拟合的北海公园冰上运动季与气温之间的关系
函数形态 | 日气温指标 | 始日 | 末日 | ||||||
---|---|---|---|---|---|---|---|---|---|
训练集 | 验证集 | 训练集 | 验证集 | ||||||
RMSE | NRMSE(%) | RMSE | NRMSE(%) | RMSE | NRMSE(%) | RMSE | NRMSE(%) | ||
线性函数 | 最低温 | 5.9807 | 19.13 | 6.1783 | 19.51 | 2.8954 | 4.26 | 3.0536 | 4.41 |
均温 | 5.9724 | 19.11 | 6.1795 | 19.52 | 2.7161 | 3.99 | 2.8898 | 4.17 | |
最高温 | 6.2854 | 20.11 | 6.4989 | 20.52 | 2.6747 | 3.93 | 2.8549 | 4.12 | |
幂函数 | 最低温 | 6.0070 | 19.22 | 6.0896 | 19.23 | 2.8963 | 4.26 | 2.9481 | 4.26 |
均温 | 5.9824 | 19.14 | 6.0629 | 19.15 | 2.7148 | 3.99 | 2.7634 | 3.99 | |
最高温 | 6.2865 | 20.12 | 6.3671 | 20.11 | 2.6720 | 3.93 | 2.7197 | 3.93 | |
指数函数 | 最低温 | 6.0088 | 19.23 | 6.1007 | 19.27 | 2.8946 | 4.25 | 3.0413 | 4.39 |
均温 | 5.9821 | 19.14 | 6.1130 | 19.31 | 2.7138 | 3.99 | 2.8458 | 4.11 | |
最高温 | 6.2846 | 20.10 | 6.5087 | 20.55 | 2.6704 | 3.93 | 2.8466 | 4.11 | |
对数函数 | 最低温 | 6.0663 | 19.41 | 6.0566 | 19.13 | 2.9571 | 4.35 | 2.9476 | 4.26 |
均温 | 6.0587 | 19.39 | 6.0498 | 19.11 | 2.7741 | 4.08 | 2.7649 | 3.99 | |
最高温 | 6.3754 | 24.52 | 6.3666 | 24.17 | 2.7318 | 4.02 | 2.7224 | 3.93 | |
逻辑斯蒂函数 | 最低温 | 5.5549 | 17.78 | 5.6254 | 17.77 | 2.7908 | 4.11 | 3.0321 | 4.38 |
均温 | 5.9413 | 19.01 | 5.9318 | 18.73 | 2.8004 | 4.12 | 3.0072 | 4.34 | |
最高温 | 6.4670 | 20.69 | 6.4879 | 20.49 | 2.7386 | 4.02 | 2.9798 | 4.3 | |
玻尔兹曼函数 | 最低温 | 5.5531 | 17.76 | 5.5585 | 17.55 | 2.9265 | 4.32 | 2.8322 | 4.11 |
均温 | 5.9413 | 19.01 | 5.9318 | 18.73 | 2.8543 | 4.23 | 2.7821 | 4.05 | |
最高温 | 6.4668 | 20.69 | 6.4921 | 20.50 | 2.4642 | 3.65 | 2.7296 | 3.97 |
表3
2021—2099年3种区域气候模式下北海公园各年代冰上运动季的预测结果
指标 | 气候模式 | 21世纪 | |||||||
---|---|---|---|---|---|---|---|---|---|
20年代 | 30年代 | 40年代 | 50年代 | 60年代 | 70年代 | 80年代 | 90年代 | ||
始日(月/日) | BCC-CSM2-MR | 1/2 | 1/2 | 1/2 | 1/3 | 1/2 | 1/3 | 1/3 | 1/3 |
CanESM-5 | 12/29 | 12/30 | 12/31 | 1/1 | 1/2 | 1/2 | 1/2 | 1/2 | |
UKESM | 12/28 | 12/31 | 12/31 | 1/1 | 1/3 | 1/2 | 1/2 | 1/2 | |
末日(月/日) | BCC-CSM2-MR | 2/5 | 2/5 | 2/5 | 2/5 | 2/4 | 2/4 | 2/4 | 2/4 |
CanESM-5 | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | |
UKESM | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | 2/3 | |
持续长度(d) | BCC-CSM2-MR | 35 | 33 | 33 | 33 | 33 | 32 | 33 | 32 |
CanESM-5 | 36 | 35 | 34 | 33 | 32 | 32 | 32 | 32 | |
UKESM | 37 | 35 | 34 | 33 | 32 | 32 | 32 | 32 |
[1] | IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[2] | Qin Dahe, Zhang Jianyun, Shan Chunchang, et al. National Assessment Report on Climate Extremes, Disaster Risk Management and Climate Change Adaptation in China. Beijing: Science Press, 2015. |
[ 秦大河, 张建云, 闪淳昌, 等. 中国极端天气气候事件和灾害风险管理与适应国家评估报告. 北京: 科学出版社, 2015.] | |
[3] |
Zhao Guosong, Liu Jiyuan, Kuang Wenhui, et al. Disturbance impacts of land use change on biodiversity conservation priority areas across China during 1990-2010. Acta Geographica Sinica, 2014, 69(11): 1640-1650.
doi: 10.11821/dlxb201411005 |
[ 赵国松, 刘纪远, 匡文慧, 等. 1990—2010年中国土地利用变化对生物多样性保护重点区域的扰动. 地理学报, 2014, 69(11): 1640-1650.] | |
[4] | Antão L H, Bates A E, Blowes S A, et al. Temperature-related biodiversity change across temperate marine and terrestrial systems. Nature Ecology & Evolution, 2020, 4(7): 927-933. |
[5] |
Tao Zexing, Zhong Shuying, Ge Quansheng, et al. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012. Acta Geographica Sinica, 2017, 72(1): 53-63.
doi: 10.11821/dlxb201701005 |
[ 陶泽兴, 仲舒颖, 葛全胜, 等. 1963—2012年中国主要木本植物花期长度时空变化. 地理学报, 2017, 72(1): 53-63.] | |
[6] |
Ge Q S, Wang H J, Rutishauser T, et al. Phenological response to climate change in China: A meta-analysis. Global Change Biology, 2015, 21(1): 265-274.
doi: 10.1111/gcb.2014.21.issue-1 |
[7] | Zhang Xueru, Zhou Jie, Li Mengmei. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geographica Sinica, 2020, 75(1): 160-178. |
[ 张学儒, 周杰, 李梦梅. 基于土地利用格局重建的区域生境质量时空变化分析. 地理学报, 2020, 75(1): 160-178.] | |
[8] |
Knoll L B, Sharma S, Denfeld B A, et al. Consequences of lake and river ice loss on cultural ecosystem services. Limnology and Oceanography Letters, 2019, 4(5): 119-131.
doi: 10.1002/lol2.v4.5 |
[9] | Liu Changming, Chen Zhikai. Evaluation of Water Resources Status and Development Trend Analysis of Supply and Demand in China. Beijing: China Water Power Press, 2001. |
[ 刘昌明, 陈志恺. 中国水资源现状评价和供需发展趋势分析. 北京: 中国水利水电出版社, 2001.] | |
[10] |
Liu W B, Sun F B. Increased adversely-affected population from water shortage below normal conditions in China with anthropogenic warming. Science Bulletin, 2019, 64(9): 567-569.
doi: 10.1016/j.scib.2019.03.007 |
[11] |
Arp C D, Whitman M S, Jones B M, et al. Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arctic, Antarctic, and Alpine Research, 2019, 51(1): 9-23.
doi: 10.1080/15230430.2018.1560839 |
[12] |
Sharma S, Blagrave K, Magnuson J J, et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 2019, 9(3): 227-231.
doi: 10.1038/s41558-018-0393-5 |
[13] |
Steiger R, Scott D, Abegg B, et al. A critical review of climate change risk for ski tourism. Current Issues in Tourism, 2019, 22(11): 1343-1379.
doi: 10.1080/13683500.2017.1410110 |
[14] |
Brammer J R, Samson J, Humphries M M. Declining availability of outdoor skating in Canada. Nature Climate Change, 2015, 5(1): 2-4.
doi: 10.1038/nclimate2465 |
[15] |
Scott D, Steiger R, Knowles N, et al. Regional ski tourism risk to climate change: An inter-comparison of Eastern Canada and US Northeast markets. Journal of Sustainable Tourism, 2020, 28(4): 568-586.
doi: 10.1080/09669582.2019.1684932 |
[16] |
Agrawal N, Jahanandish A. Is climate change impacting Rideau Canal Skateway: The world's longest skating rink? Natural Hazards, 2019, 98(1): 91-101.
doi: 10.1007/s11069-018-3459-9 |
[17] |
Smith J W, Seekamp E, McCreary A, et al. Shifting demand for winter outdoor recreation along the North Shore of Lake Superior under variable rates of climate change: A finite-mixture modeling approach. Ecological Economics, 2016, 123: 1-13.
doi: 10.1016/j.ecolecon.2015.12.010 |
[18] |
Koenig U, Abegg B. Impacts of climate change on winter tourism in the Swiss Alps. Journal of Sustainable Tourism, 1997, 5(1): 46-58.
doi: 10.1080/09669589708667275 |
[19] |
Moen J, Fredman P. Effects of climate change on alpine skiing in Sweden. Journal of Sustainable Tourism, 2007, 15(4): 418-437.
doi: 10.2167/jost624.0 |
[20] | Beijing Municipal People's Government. Opinions of Beijing Municipal People's Government on Accelerating the Development of Snow and Ice Sports (2016-2022). 2016. |
[北京市人民政府. 北京市人民政府关于加快冰雪运动发展的意见(2016—2022年) (京政发〔2016〕12号). 2016.] | |
[21] |
Liu J, Cheng H, Sun X Q, et al. Effects of climate change on outdoor skating in the Beihai Park of Beijing and related adaptive strategies. Sustainability, 2017, 9(7): 1147-1162.
doi: 10.3390/su9071147 |
[22] | The Management Department of Beihai and Jingshan Park. Annals of Beihai and Jingshan Park. Beijing: China Forestry Publishing House, 2000. |
[北海景山公园管理处. 北海景山公园志. 北京: 中国林业出版社, 2000.] | |
[23] | Cheng Peifeng, Li Jiting, Li Xinning. Analysis of carrying capacity of ice cover based on Winkler Model. Yangtze River, 2017, 48(13): 64-68. |
[ 程培峰, 李吉庭, 李新宁. 基于Winkler模型的冰层承载能力分析. 人民长江, 2017, 48(13): 64-68.] | |
[24] | Beijing Administration for Market Regulation. Security management specification for gymnasium and playground: Skating area (DB11/T 1756—2020). 2020. |
[北京市市场监督管理局. 体育场所安全运营管理规范—滑冰场所(DB11/T1756—2020). 2020.] | |
[25] | Zhou Yi. The earliest opening of the ice rink in Beihai Park during the past three years. Beijing News, 2018-12-27(A10). |
[ 周依. 北海公园冰场开放系3年来最早. 新京报, 2018-12-27(A10).] | |
[26] | Zhu Kezhen, Wan Minwei. Phenology. Beijing: Science Press, 1973. |
[ 竺可桢, 宛敏渭. 物候学. 北京: 科学出版社, 1973.] | |
[27] | Wan Minwei, Liu Xiuzhen. China's National Phenological Observation Criterion. Beijing: Science Press, 1979. |
[ 宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979.] | |
[28] | Xin Xiaoge, Wu Tongwen, Zhang Jie, et al. Introduction of BCC models and its participation in CMIP6. Climate Change Research, 2019, 15(5): 533-539. |
[ 辛晓歌, 吴统文, 张洁, 等. BCC模式及其开展的CMIP6试验介绍. 气候变化研究进展, 2019, 15(5): 533-539.] | |
[29] |
Tebaldi C, Debeire K, Eyring V, et al. Climate model projections from the Scenario Model Intercomparison Project (Scenario MIP) of CMIP6. Earth System Dynamics, 2021, 12(1): 253-293.
doi: 10.5194/esd-12-253-2021 |
[30] |
Sen P K. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[31] |
Mann H B. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 1945, 13(3): 245-249.
doi: 10.2307/1907187 |
[32] | Wei Fengying. Modern Climatic Statistical Diagnosis and Prediction Techniques. Beijing: China Meteorological Press, 2007. |
[ 魏凤英. 现代气候统计诊断与预测技术. 北京: 气象出版社, 2007.] | |
[33] |
Matsumoto K, Ohta T, Irasawa M, et al. Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biology, 2003, 9(11): 1634-1642.
doi: 10.1046/j.1365-2486.2003.00688.x |
[34] |
Fielding A H, Bell J F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 1997, 24(1): 38-49.
doi: 10.1017/S0376892997000088 |
[35] |
Jamieson P D, Porter J R, Wilson D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 1991, 27(4): 337-350.
doi: 10.1016/0378-4290(91)90040-3 |
[36] | Wilks D S. Statistical Methods in the Atmospheric Sciences. 2nd ed. San Diego: Academic Press, 2006. |
[37] |
Medhaug I, Stolpe M B, Fischer E M, et al. Reconciling controversies about the 'global warming hiatus'. Nature, 2017, 545(7652): 41-47.
doi: 10.1038/nature22315 |
[38] |
Li Q X, Yang S, Xu W H, et al. China experiencing the recent warming hiatus. Geophysical Research Letters, 2015, 42(3): 889-898.
doi: 10.1002/2014GL062773 |
[39] |
Du Qinqin, Zhang Mingjun, Wang Shengjie, et al. Changes in air temperature of China in response to global warming hiatus. Acta Geographica Sinica, 2018, 73(9): 1748-1764.
doi: 10.11821/dlxb201809011 |
[ 杜勤勤, 张明军, 王圣杰, 等. 中国气温变化对全球变暖停滞的响应. 地理学报, 2018, 73(9): 1748-1764.] | |
[40] |
Wang X, Xiao J, Li X, et al. No trends in spring and autumn phenology during the global warming hiatus. Nature Communications, 2019, 10(1): 2389-2399.
doi: 10.1038/s41467-019-10235-8 |
[41] |
Prodon R, Geniez P, Cheylan M, et al. A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998-2013 warming slowdown. Global Change Biology, 2017, 23(12): 5481-5491.
doi: 10.1111/gcb.13812 pmid: 28712146 |
[42] |
Piao S L, Liu Q, Chen A P, et al. Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25(6): 1922-1940.
doi: 10.1111/gcb.2019.25.issue-6 |
[43] | Liang Sujie. Assessment and projection of winter temperatures in China by CMIP5 Climate System Models. Climate Change Research Letters, 2017, 5(5): 317-339. |
[ 梁苏洁. CMIP5气候系统模式对中国冬季气温变化模拟评估及未来情景预估. 气候变化研究快报, 2017, 5(5): 317-339.] | |
[44] |
Luo Haijiang. Differences in plant phenology between urban and rural areas of Beijing based on satellite-based remote sensing. Progress in Geography, 2013, 32(10): 1463-1469.
doi: 10.11820/dlkxjz.2013.10.004 |
[ 罗海江. 基于卫星遥感的北京城乡植物物候差异. 地理科学进展, 2013, 32(10): 1463-1469.] | |
[45] | Liang Hong, Jiang Xiaoyan, Yu Qingye. Research and application of winter ice thickness characteristics in Shenyang. Journal of Anhui Agricultural Sciences, 2009, 37(29): 14255-14257, 14324. |
[ 梁红, 姜晓艳, 于清野. 沈阳市冬季冰层厚度特征研究及应用. 安徽农业科学, 2009, 37(29): 14255-14257, 14324.] | |
[46] | Zhang Ling, Xu Zongxue, Ruan Benqing. Effect of urban heat island on the air temperature and precipitation in Beijing region. Journal of Natural Resources, 2006, 21(5): 746-755. |
[ 张玲, 徐宗学, 阮本清. 北京城市热岛效应对气温和降水量的影响. 自然资源学报, 2006, 21(5): 746-755.] | |
[47] |
Liu Yonghong, Xuan Chunyi, Quan Weijun. Thermal environment effect of land surface water bodies in Beijing based on satellite data. Journal of Lake Sciences, 2013, 25(1): 73-81.
doi: 10.18307/2013.0110 |
[ 刘勇洪, 轩春怡, 权维俊. 基于卫星资料的北京陆表水体的热环境效应分析. 湖泊科学, 2013, 25(1): 73-81.] | |
[48] |
Bicknell S McManus P. The canary in the coalmine: Australian ski resorts and their response to climate change. Geographical Research, 2006, 44(4): 386-400.
doi: 10.1111/ages.2006.44.issue-4 |
[49] |
Scott D, McBoyle G. Climate change adaptation in the ski industry. Mitigation and Adaptation Strategies for Global Change, 2006, 12(8): 1411-1431.
doi: 10.1007/s11027-006-9071-4 |
[50] |
Nõges P, Nõges T. Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia, 2014, 731(1): 5-18.
doi: 10.1007/s10750-013-1572-z |
[51] | Alamgir M, Pert P L, Turton S M. A review of ecosystem services research in Australia reveals a gap in integrating climate change and impacts on ecosystem services. International Journal of Biodiversity Science, Ecosystem Services & Management, 2014, 10(2): 112-127. |
[52] | Han Huiqing, Zhang Jiaoyan, Ma Geng, et al. Advances on impact of climate change on ecosystem services. Journal of Nanjing Forestry University: Natural Sciences Edition, 2018, 42(2): 184-190. |
[ 韩会庆, 张娇艳, 马庚, 等. 气候变化对生态系统服务影响的研究进展. 南京林业大学学报(自然科学版), 2018, 42(2): 184-190.] | |
[53] |
Flagestad A, Hope C A. Strategic success in winter sports destinations: A sustainable value creation perspective. Tourism Management, 2001, 22(5): 445-461.
doi: 10.1016/S0261-5177(01)00010-3 |
[54] |
Gössling S, Hall C M. Uncertainties in predicting tourist flows under scenarios of climate change. Climatic Change, 2006, 79(3-4): 163-173.
doi: 10.1007/s10584-006-9081-y |
[1] | 付晶莹, 郜强, 江东, 林刚. 黑土保护与粮食安全背景下齐齐哈尔市国土空间优化调控路径[J]. 地理学报, 2022, 77(7): 1662-1680. |
[2] | 莫兴国, 刘苏峡, 胡实. 黄河源区气候—植被—水文协同演变及成因辨析[J]. 地理学报, 2022, 77(7): 1730-1744. |
[3] | 马忠学, 崔惠娟, 葛全胜. 基于植被动态模式预估中国植被净初级生产力变化格局[J]. 地理学报, 2022, 77(7): 1821-1836. |
[4] | 邓佳音, 程维明, 刘樯漪, 焦毅蒙, 刘建忠. 月表地貌起伏形态分异特征及分级标准研究[J]. 地理学报, 2022, 77(7): 1794-1807. |
[5] | 孙三百, 张青萍, 李冉, 张可云. 中国地区收入与净财富不平等的演变路径识别[J]. 地理学报, 2022, 77(6): 1411-1429. |
[6] | 郭建科, 梁木新. 中国与“21世纪海上丝绸之路”沿线国家航运网络及经贸联系的耦合特征[J]. 地理学报, 2022, 77(6): 1531-1545. |
[7] | 谭政华, 巩远发. 亚洲夏季风北部边缘带变化及中高纬度行星波对其影响[J]. 地理学报, 2022, 77(5): 1120-1137. |
[8] | 李佳慧, 黄麟, 曹巍. 中国县域生态资产损益的影响机制及优化提升路径[J]. 地理学报, 2022, 77(5): 1260-1274. |
[9] | 穆学青, 郭向阳, 明庆忠, 胡程. 黄河流域旅游生态安全的动态演变特征及驱动因素[J]. 地理学报, 2022, 77(3): 714-735. |
[10] | 王强, 周侃, 林键. 中国城乡家庭能源平等变化特征分析[J]. 地理学报, 2022, 77(2): 457-473. |
[11] | 刘樯漪, 程维明, 阎广建, 王睿博, 刘建忠. 月表高程分布特征及其分级标准初探[J]. 地理学报, 2022, 77(1): 106-119. |
[12] | 张陈彬, 吴铎, 陈雪梅, 袁子杰, 陈发虎. 青藏高原东北部甘加盆地古梯田地层与年代初探[J]. 地理学报, 2022, 77(1): 66-78. |
[13] | 丁锐, 史文娇. 1993—2017年气候变化对西藏谷物单产的定量影响[J]. 地理学报, 2021, 76(9): 2174-2186. |
[14] | 徐志伟, 鹿化煜. 毛乌素沙地风沙环境变化研究的理论和新认识[J]. 地理学报, 2021, 76(9): 2203-2223. |
[15] | 鲍锟山, 杨婷, 肖湘, 贾琳, 王国平, 沈吉. 基于泥炭记录的过去150 a东北山地大气粉尘沉降[J]. 地理学报, 2021, 76(9): 2283-2296. |