地理学报 ›› 2022, Vol. 77 ›› Issue (3): 697-713.doi: 10.11821/dlxb2022003014
梁鑫源1,2(), 金晓斌1,2,3(
), 孙瑞1, 韩博1, 任婕1, 周寅康1,2,3
收稿日期:
2020-11-11
修回日期:
2021-07-28
出版日期:
2022-03-25
发布日期:
2022-05-25
通讯作者:
金晓斌(1974-), 男, 甘肃兰州人, 博士, 教授, 博导, 主要从事土地利用与规划研究。E-mail: jinxb@nju.edu.cn作者简介:
梁鑫源(1996-), 男, 河南洛阳人, 博士生, 主要从事土地资源可持续利用研究。E-mail: liang_xiny@foxmail.com
基金资助:
LIANG Xinyuan1,2(), JIN Xiaobin1,2,3(
), SUN Rui1, HAN Bo1, REN Jie1, ZHOU Yinkang1,2,3
Received:
2020-11-11
Revised:
2021-07-28
Published:
2022-03-25
Online:
2022-05-25
Supported by:
摘要:
科学解析中国耕地数量保多少与如何保等问题对保障国家粮食安全与资源环境可持续发展具有重要意义。面向共享社会经济路径(SSPs)的多情景粮食安全底线约束,本文试图利用耕地保有量、人口预测、粮食需求估算、单产提升潜力衰减等模型方法,依据产能特征—健康状态—耕作条件—利用水平的多维度耕地保护紧迫性评估框架,通过耦合时间序列的数量边界控制与空间尺度的区域规则约束刻画出中国的耕地保护弹性空间。在满足个人基本营养安全与作物单产条件干扰变量恒定的假设前提下,研究发现:① 中国多情景耕地保有量在2020—2100年间呈下降态势,现有耕地数量足以维持长期的粮食安全,但短期内则仅勉强达到理论粮食安全的临界区间1.40×108~1.59×108 hm2。② 不同维度耕地保护紧迫性在九大农业区划内呈现差异化分布特征,自然条件优越且适宜耕作的黄淮海平原区与长江中下游地区是综合紧迫性高值地块集聚区域。③ 可持续情景与区域冲突情景分别代表粮食安全底线约束下的最小与最大耕地保有量情景,在当前国际形势下,中国应保证短期(2035年内)可休耕量不高于9.29%。④ 基于时空耦合划定的耕地保护弹性空间可分为优先保护、严格管控、休养生息、战略储备、整治修复和特殊保护6类,不同空间的耕地保护弹性强度、目标与任务各有侧重。整体而言,耕地保护弹性空间的划定思路有助于农业结构调整、休耕政策完善等耕地空间规划体系构建,对中国耕地保护制度转型具有借鉴价值。
梁鑫源, 金晓斌, 孙瑞, 韩博, 任婕, 周寅康. 多情景粮食安全底线约束下的中国耕地保护弹性空间[J]. 地理学报, 2022, 77(3): 697-713.
LIANG Xinyuan, JIN Xiaobin, SUN Rui, HAN Bo, REN Jie, ZHOU Yinkang. China's resilience-space for cultivated land protection under the restraint of multi-scenario food security bottom line[J]. Acta Geographica Sinica, 2022, 77(3): 697-713.
表1
耕地保护紧迫性评价体系
维度 | 指标 | 内容 | 属性 |
---|---|---|---|
产能特征 (A) | 耕地质量等别 (0.311) | 依据净初级生产力(NPP)对生态系统服务价值当量因子进行调整获取食物生产服务价值,表征耕地生产能力 | + |
食物生产价值 (0.147) | 基于土地利用现状调查耕地图斑从气候、地形、土壤、农业基础设施等方面综合评定,反映耕地质量与生产能力 | + | |
作物生长状况 (0.103) | 基于连续时间序列NDVI卫星遥感数据采用最大值合成法生成年度植被指数,衡量区域植被覆盖与生长状况,利用耕地掩膜提取区域农作物NDVI | + | |
农田生产潜力 (0.439) | 采用GAEZ(Global Agro-Ecological Zones)模型,综合考虑光、温、水、土壤、地形、CO2浓度、病虫害、农业气候限制等多方面因素,估算耕地生产潜力 | + | |
健康状态 (B) | 土壤蓄水能力 (0.375) | 通过测算土壤含沙量获取,表征经人类活动干扰后的表层土壤沙化状态,含沙比例越大保水性能越差 | - |
土壤熟化程度 (0.182) | 由土壤容重表示,衡量人类生产活动与耕作管理措施对土壤耕性的改善程度,容重值越接近1熟化程度越高 | + | |
土壤质地 (0.241) | 通常为不同大小直径的矿物颗粒的组合状况,表征土壤通气、保肥、保水等性状优劣 | + | |
土壤有机碳含量 (0.202) | 通过微生物作用所形成的腐殖质含量,衡量土壤养分含量及提供作物生产所需有机质的能力 | + | |
耕作条件 (C) | 坡度 (0.489) | 利用高程数据通过坡度分析工具获取,表征地势对耕地利用的影响限制程度 | - |
地形起伏度 (0.186) | 通过影响耕地面积、耕地生产条件、农业灾害、生产成本与产出等因素影响耕地生产潜力 | - | |
距河流距离 (0.168) | 通过欧氏距离工具获取耕地距河流的空间距离,表征灌溉可达性与水资源供给能力 | - | |
距居民点距离 (0.157) | 通过欧氏距离工具获取耕地距农村居民点的空间距离,表征耕作可达性与便捷性 | - | |
利用水平 (D) | 细碎化程度 (0.219) | 由耕地斑块面积、斑块密度、斑块聚集度指数赋权综合测度,表征耕地离散程度与资源利用格局 | - |
规模化率 (0.289) | 以高标准农田建设标准为基础,达到规模化经营的耕地面积占比,反映耕地集约经营状况 | + | |
农田熟制 (0.320) | 利用S-G滤波方法对旬NDVI数据进行去噪,重建作物生长植被指数曲线,通过峰值特征点反演提取 | + | |
基础设施完备度 (0.172) | 单位面积田间道路与灌溉沟渠长度,表征以田间道路和农电水利建设工程等为主的农业基础设施配套状况 | + |
表2
不同农业分区中多维度耕地保护紧迫性平均水平
农业区划 | 不同维度紧迫性 | 综合 紧迫性 | |||
---|---|---|---|---|---|
产能特征 | 健康状态 | 耕作条件 | 利用水平 | ||
东北平原区 | 0.2035 | 0.2461 | 0.9769 | 0.2229 | 1.6497 |
北方干旱半干旱区 | 0.1396 | 0.2496 | 0.9659 | 0.2167 | 1.5718 |
黄淮海平原区 | 0.2792 | 0.2476 | 0.9774 | 0.2325 | 1.7367 |
黄土高原区 | 0.1639 | 0.2479 | 0.9467 | 0.1833 | 1.5418 |
青藏高原区 | 0.0921 | 0.2612 | 0.9107 | 0.2007 | 1.4649 |
长江中下游地区 | 0.3127 | 0.2407 | 0.9709 | 0.2113 | 1.7360 |
四川盆地及周边地区 | 0.2118 | 0.2718 | 0.9291 | 0.2262 | 1.6388 |
云贵高原区 | 0.1400 | 0.2619 | 0.9191 | 0.2150 | 1.5362 |
华南区 | 0.1901 | 0.2402 | 0.9535 | 0.1981 | 1.5826 |
[1] |
Bodirsky B L, Rolinski S, Biewald A, et al. Global food demand scenarios for the 21st century. PLOS ONE, 2015, 10(11): e0139201. DOI: 10.1371/journal.pone.0139201.
doi: 10.1371/journal.pone.0139201 |
[2] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture. PNAS, 2011, 108(50): 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295 |
[3] |
Pribadi D O, Pauleit S. The dynamics of peri-urban agriculture during rapid urbanization of Jabodetabek Metropolitan Area. Land Use Policy, 2015, 48: 13-24.
doi: 10.1016/j.landusepol.2015.05.009 |
[4] |
d'Amour C B, Reitsma F, Baiocchi G, et al. Future urban land expansion and implications for global croplands. PNAS, 2017, 114(34): 8939-8944.
doi: 10.1073/pnas.1606036114 |
[5] |
Jiang P, Li M, Cheng L. Dynamic response of agricultural productivity to landscape structure changes and its policy implications of Chinese farmland conservation. Resources, Conservation & Recycling, 2020, 156: 104724. DOI: 10.1016/j.resconrec.2020.104724.
doi: 10.1016/j.resconrec.2020.104724 |
[6] |
Lamb A, Green R, Bateman I, et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nature Climate Change, 2016, 6(5): 488-492.
doi: 10.1038/nclimate2910 |
[7] |
Valin H, Havlík P, Mosnier A, et al. Agricultural productivity and greenhouse gas emissions: Trade-offs or synergies between mitigation and food security? Environmental Research Letters, 2013, 8(3): 035019. DOI: 10.1088/1748-9326/8/3/035019.
doi: 10.1088/1748-9326/8/3/035019 |
[8] |
Folberth C, Khabarov N, Balkovič J, et al. The global cropland-sparing potential of high-yield farming. Nature Sustainability, 2020, 3(4): 281-289.
doi: 10.1038/s41893-020-0505-x |
[9] |
Galeana-Pizaña J M, Couturier S, Monsivais-Huertero A. Assessing food security and environmental protection in Mexico with a GIS-based food environmental efficiency index. Land Use Policy, 2018, 76: 442-454.
doi: 10.1016/j.landusepol.2018.02.022 |
[10] |
Wang X, Li X B. Where are potential regions for the reallocation of wheat in the context of Chinese land fallow and food security policies? Findings from spatio-temporal changes in area and production between 1990 and 2014. Journal of Resources and Ecology, 2018, 9(6): 592-608.
doi: 10.5814/j.issn.1674-764x.2018.06.003 |
[11] |
Yang Q Y, Yang R H, Wang Y H, et al. Does fallowing cultivated land threaten food security? Empirical evidence from Chinese pilot provinces. Sustainability, 2019, 11(10): 2836. DOI: 10.3390/su11102836.
doi: 10.3390/su11102836 |
[12] |
Verburg P H, Tabeau A, Hatna E. Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: A study for land use in Europe. Journal of Environmental Management, 2013, 127: S132-S144.
doi: 10.1016/j.jenvman.2012.08.038 |
[13] | Li Xin, Yan Siqi, Xiao Changjiang. Determination of flexible space for land resource spatial optimization under uncertain conditions. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 241-247. |
[李鑫, 严思齐, 肖长江. 不确定条件下土地资源空间优化的弹性空间划定. 农业工程学报, 2016, 32(16): 241-247.] | |
[14] |
Cottrell R S, Nash K L, Halpren B S, et al. Food production shocks across land and sea. Nature Sustainability, 2019, 2: 130-137.
doi: 10.1038/s41893-018-0210-1 |
[15] |
Huang Q H, Lu J C, Li M C, et al. Developing planning measures to preserve farmland: A case study from China. Sustainability, 2015, 7(10): 13011-13028.
doi: 10.3390/su71013011 |
[16] |
Zuo L, Zhang Z, Carlson K M, et al. Progress towards sustainable intensification in China challenged by land-use change. Nature Sustainability, 2018, 1(6): 304-313.
doi: 10.1038/s41893-018-0076-2 |
[17] |
Li T T, Long H L, Zhang Y N, et al. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy, 2017, 60: 26-36.
doi: 10.1016/j.landusepol.2016.10.013 |
[18] | Su Kangchuan, Yang Qingyuan, Zhang Zhongxun, et al. Investigation of differential fallow patterns and technical measures for cultivated land in China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 283-291. |
[苏康传, 杨庆媛, 张忠训, 等. 中国耕地差异化休耕模式及技术措施探讨. 农业工程学报, 2020, 36(9): 283-291.] | |
[19] | Tan Shukui, Han Siyu, Zhang Lu. Study on fallow scale and dynamical simulation of major grain producing areas in China from the food security perspective. China Land Science, 2020, 34(2): 9-17. |
[谭术魁, 韩思雨, 张路. 粮食安全视角下粮食主产区耕地休耕规模及动态仿真研究. 中国土地科学, 2020, 34(2): 9-17.] | |
[20] |
Yang Qingyuan, Bi Guohua, Chen Zhantu, et al. Spatial allocation of fallow land in karst rocky desertification areas: A case study in Qinglong County, Guizhou Province. Acta Geographica Sinica, 2018, 73(11): 2250-2266.
doi: 10.11821/dlxb201811015 |
[杨庆媛, 毕国华, 陈展图, 等. 喀斯特生态脆弱区休耕地的空间配置研究: 以贵州省晴隆县为例. 地理学报, 2018, 73(11): 2250-2266.] | |
[21] |
Liu J Y, Kuang W H, Zhang Z X, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 2014, 24(2): 195-210.
doi: 10.1007/s11442-014-1082-6 |
[22] | Dong J W, Liu J Y, Yan H M, et al. Spatio-temporal pattern and rationality of land reclamation and cropland abandonment in mid-eastern Inner Mongolia of China in 1990-2005. Environmental Monitoring & Assessment, 2011, 179(1-4): 137-153. |
[23] |
Zhang L, Wu B F, Zhu L, et al. Patterns and driving forces of cropland changes in the Three Gorges Area, China. Regional Environmental Change, 2012, 12(4): 765-776.
doi: 10.1007/s10113-012-0291-8 |
[24] |
Han Bo, Jin Xiaobin, Sun Rui, et al. Optimized allocation of cultivated land in land consolidation project area based on multi-objective linear programming. Journal of Natural Resources, 2019, 34(4): 718-731.
doi: 10.31497/zrzyxb.20190404 |
[韩博, 金晓斌, 孙瑞, 等. 土地整治项目区耕地资源优化配置研究. 自然资源学报, 2019, 34(4): 718-731.] | |
[25] |
Liang Xinyuan, Li Yangbing, Shao Jingan, et al. Traditional agroecosystem transition in mountainous area of Three Gorges Reservoir Area. Acta Geographica Sinica, 2019, 74(8): 1605-1621.
doi: 10.11821/dlxb201908009 |
[梁鑫源, 李阳兵, 邵景安, 等. 三峡库区山区传统农业生态系统转型. 地理学报, 2019, 74(8): 1605-1621.] | |
[26] |
Fan Qiaoxi, Shao Jing'an, Ying Shouying. The empirical determination on appropriate management scale of cultivated land in mountainous areas: A case study of Chongqing. Geographical Research, 2018, 37(9): 1724-1735.
doi: 10.11821/dlyj201809006 |
[范乔希, 邵景安, 应寿英. 山区合适耕地经营规模确定的实证研究: 以重庆市为例. 地理研究, 2018, 37(9): 1724-1735.] | |
[27] |
Lu D, Wang Y H, Yang Q Y, et al. Exploring a moderate fallow scale of cultivated land in China from the perspective of food security. International Journal of Environmental Research and Public Health, 2019, 16(22): 4329. DOI: 10.3390/ijerph16224329.
doi: 10.3390/ijerph16224329 |
[28] | Wu Yuzhe, Xu Zhiyi. Study on the transformation of cropland protection under the background of rehabilitation system. Resources Science, 2019, 41(1): 9-22. |
[吴宇哲, 许智钇. 休养生息制度背景下的耕地保护转型研究. 资源科学, 2019, 41(1): 9-22.] | |
[29] |
Theurl M C, Lauk C, Kalt G, et al. Food systems in a zero-deforestation world: Dietary change is more important than intensification for climate targets in 2050. Science of the Total Environment, 2020, 735: 139353. DOI: 10.1016/j.scitotenv.2020.139353.
doi: 10.1016/j.scitotenv.2020.139353 |
[30] |
Bajželj B, Richards K, Allwood J, et al. Importance of food-demand management for climate mitigation. Nature Climate Change, 2014, 4: 924-929.
doi: 10.1038/nclimate2353 |
[31] |
Stehfest E. Food choices for health and planet. Nature, 2014, 515(7528): 501-502.
doi: 10.1038/nature13943 |
[32] |
West P C, Gerber J S, Engstrom P M, et al. Leverage points for improving global food security and the environment. Science, 2014, 345(6194): 325-328.
doi: 10.1126/science.1246067 |
[33] |
Yu Chaoqing. The coupled effects of water and nitrogen on China's food and environmental securities. Scientia Sinica: Terrae, 2019, 49(12): 2018-2036.
doi: 10.1360/SSTe-2019-0041 |
[喻朝庆. 水—氮耦合机制下的中国粮食与环境安全. 中国科学: 地球科学, 2019, 49(12): 2018-2036.] | |
[34] |
Zuo Xiuling, Su Fenzhen, Zhang Yu, et al. Identifying priority conservation areas for South China Sea Islands under the global climate change. Acta Geographica Sinica, 2020, 75(3): 647-661.
doi: 10.11821/dlxb202003015 |
[左秀玲, 苏奋振, 张宇, 等. 全球气候变化下南海诸岛保护优先区识别分析. 地理学报, 2020, 75(3): 647-661.] | |
[35] | Gu Jirong, Zhu Mingcang, Jiang Liuguangyan, et al. The effect and dividing of flexible space in territory spatial planning. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(12): 39-47. |
[辜寄蓉, 朱明仓, 江浏光艳, 等. 国土空间规划中弹性空间的作用与划分. 中国农业资源与区划, 2019, 40(12): 39-47.] | |
[36] | Cai Yunlong, Fu Zeqiang, Dai Erfu. The minimum area per capita of cultivated land and its implication for the optimization of land resource allocation. Acta Geographica Sinica, 2002, 57(2): 127-134. |
[蔡运龙, 傅泽强, 戴尔阜. 区域最小人均耕地面积与耕地资源调控. 地理学报, 2002, 57(2): 127-134.] | |
[37] | Jiang Tong, Zhao Jing, Jing Cheng, et al. National and provincial population projected to 2100 under the shared socioeconomic pathways in China. Climate Change Research, 2017, 13(2): 128-137. |
[姜彤, 赵晶, 景丞, 等. IPCC共享社会经济路径下中国和分省人口变化预估. 气候变化研究进展, 2017, 13(2): 128-137.] | |
[38] | Xie Gaodi, Cheng Shengkui, Xiao Yu, et al. The balance between grain supply and demand and the reconstruction of China's food security strategy in the new period. Journal of Natural Resources, 2017, 32(6): 895-903. |
[谢高地, 成升魁, 肖玉, 等. 新时期中国粮食供需平衡态势及粮食安全观的重构. 自然资源学报, 2017, 32(6): 895-903.] | |
[39] | FAO. Global food losses and food waste: Extent, causes and prevention. Rome, 2011. |
[40] | Sustainable Development Strategy Research Project Team of China's Animal Husbandry Industry. Research on Sustainable Development Strategy of China's Animal Husbandry Industry (Comprehensive Volume). Beijing: China Agriculture Press, 2013. |
[中国养殖业可持续发展战略研究项目组. 中国养殖业可持续发展战略研究(综合卷). 北京: 中国农业出版社, 2013.] | |
[41] | Xiao Yu, Cheng Shengkui, Xie Gaodi, et al. The balance between supply and consumption of the main types of grain in China. Journal of Natural Resources, 2017, 32(6): 927-936. |
[肖玉, 成升魁, 谢高地, 等. 我国主要粮食品种供给与消费平衡分析. 自然资源学报, 2017, 32(6): 927-936.] | |
[42] | Yuan Ying, Song Jinjie, Yang Chunhe, et al. Balanced diets food from the angle of demand forecasting. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(12): 119-123. |
[苑颖, 宋金杰, 杨春河, 等. 平衡膳食模式视角下粮食需求预测. 中国农业资源与区划, 2017, 38(12): 119-123.] | |
[43] | Tang Huajun, Li Zhemin. Study on per capita grain demand based on Chinese reasonable dietary pattern. Scientia Agricultura Sinica, 2012, 45(11): 2315-2327. |
[唐华俊, 李哲敏. 基于中国居民平衡膳食模式的人均粮食需求量研究. 中国农业科学, 2012, 45(11): 2315-2327.] | |
[44] | Zhang Yibo. China's food security situation and policy recommendations in the new era. Macroeconomics, 2020(3): 57-66, 81. |
[张义博. 新时期中国粮食安全形势与政策建议. 宏观经济研究, 2020(3): 57-66, 81.] | |
[45] | Jiang Heping, Wang Shuang. Institutional analyses of the impact of China's high food inventory on the food prices. Price: Theory & Practice, 2016(7): 28-33. |
[蒋和平, 王爽. 我国粮食高库存对粮价的影响及制度分析. 价格理论与实践, 2016(7): 28-33.] | |
[46] | Zhu Jiawei, Zhou Linlin, Xie Xiaotong. Forecasting the promotion potential of grain yield per unit in mid-long term with a decay model: A case study in Henan Province. Journal of Natural Resources, 2017, 32(9): 1627-1638. |
[朱嘉伟, 周琳琳, 谢晓彤. 单产提升潜力衰减模型法在河南粮食单产中长期预测中的应用研究. 自然资源学报, 2017, 32(9): 1627-1638.] | |
[47] | Zhang Jinke, Zhang Fengrong, Zhang Lin, et al. Comparison between the potential grain productivity and the actual grain yield of cultivated lands in mainland China. Scientia Agricultura Sinica, 2006, 39(11): 2278-2285. |
[张晋科, 张凤荣, 张琳, 等. 中国耕地的粮食生产能力与粮食产量对比研究. 中国农业科学, 2006, 39(11): 2278-2285.] | |
[48] |
O'Neill B C, Kriegler E, Ebi K L, et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 2017, 42: 169-180.
doi: 10.1016/j.gloenvcha.2015.01.004 |
[49] |
Kc S, Lutz W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 2017, 42: 181-192.
doi: 10.1016/j.gloenvcha.2014.06.004 |
[50] |
Jiang Tong, Jing Cheng, Wang Yanjun, et al. Possibility of implementing global sustainable development goals under the shared socioeconomic pathways. Scientia Sinica: Terrae, 2020, 50(10): 1445-1454.
doi: 10.1360/SSTe-2019-0158 |
[姜彤, 景丞, 王艳君, 等. SSPs路径下实现全球可持续发展目标的可能性分析. 中国科学: 地球科学, 2020, 50(10): 1445-1454.] | |
[51] |
Xin Xiangfei, Wang Jimin. Target setting of food self-sufficiency level in China: Literature review and policy enlightenment. Journal of Natural Resources, 2019, 34(11): 2257-2269.
doi: 10.31497/zrzyxb.20191101 |
[辛翔飞, 王济民. 我国粮食自给水平目标设定: 研究综述与政策启示. 自然资源学报, 2019, 34(11): 2257-2269.] | |
[52] | Chen Yinjun, Yi Xiaoyan, Fang Linna, et al. Analysis of cultivated land and grain production potential in China. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131. |
[陈印军, 易小燕, 方琳娜, 等. 中国耕地资源与粮食增产潜力分析. 中国农业科学, 2016, 49(6): 1117-1131.] | |
[53] |
Deng X Z, Gibson J, Wang P. Management of trade-offs between cultivated land conversions and land productivity in Shandong Province. Journal of Cleaner Production, 2017, 142: 767-774.
doi: 10.1016/j.jclepro.2016.04.050 |
[54] |
Nyamasoka-Magonziwaa B, Vaneka S J, Ojiemb J O, et al. A soil tool kit to evaluate soil properties and monitor soil health changes in smallholder farming contexts. Geoderma, 2020, 376: 114539. DOI: 10.1016/j.geoderma.2020.114539.
doi: 10.1016/j.geoderma.2020.114539 |
[55] |
Liang X Y, Li Y B, Zhou Y L. Study on the abandonment of sloping farmland in Fengjie County, Three Gorges Reservoir Area, a mountainous area in China. Land Use Policy, 2020, 97: 104760. DOI: 10.1016/j.landusepol. 2020.104760.
doi: 10.1016/j.landusepol. 2020.104760 |
[56] |
Liang X Y, Li Y B. Spatiotemporal features of farmland scaling and the mechanisms that underlie these changes within the Three Gorges Reservoir Area. Journal of Geographical Sciences, 2019, 29(4): 563-580.
doi: 10.1007/s11442-019-1615-0 |
[57] | Sun Rui, Jin Xiaobin, Zhao Qingli, et al. Comprehensive zoning of cultivated land consolidation potential integrating "quality-pattern-function" in China. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 264-275. |
[孙瑞, 金晓斌, 赵庆利, 等. 集成“质量—格局—功能”的中国耕地整治潜力综合分区. 农业工程学报, 2020, 36(7): 264-275.] | |
[58] |
Holling C S. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973, 4: 1-23.
doi: 10.1146/ecolsys.1973.4.issue-1 |
[59] |
Sellberg M M, Ryan P, Borgström S T, et al. From resilience thinking to resilience planning: Lessons from practice. Journal of Environmental Management, 2018, 217: 906-918.
doi: S0301-4797(18)30388-8 pmid: 29665570 |
[60] |
Li Q R. Resilience thinking as a system approach to promote China's sustainability transitions. Sustainability, 2020, 12: 5008.
doi: 10.3390/su12125008 |
[61] |
Agudelo C A R, Mazzeo N, Díaz I, et al. Land use planning in the Amazon Basin: Challenges from resilience thinking. Ecology and Society, 2020, 25(1): 8. DOI: 10.5751/ES-11352-250108.
doi: 10.5751/ES-11352-250108 |
[62] |
Liu Yanxu, Fu Bojie, Wang Shuai, et al. Research progress of human-earth system dynamics based on spatial resilience theory. Acta Geographica Sinica, 2020, 75(5): 891-903.
doi: 10.11821/dlxb202005001 |
[刘焱序, 傅伯杰, 王帅, 等. 空间恢复力理论支持下的人地系统动态研究进展. 地理学报, 2020, 75(5): 891-903.] | |
[63] |
Kong X B. China must protect high-quality arable land. Nature, 2014, 506: 7.
doi: 10.1038/506007a |
[64] |
Xiong X, Zhang L, Hao Y, et al. Urban dietary changes and linked carbon footprint in China: A case study of Beijing. Journal of Environmental Management, 2020, 255: 109877. DOI: 10.1016/j.jenvman.2019.109877.
doi: S0301-4797(19)31595-6 pmid: 31778867 |
[65] |
Song W, Pijanowski B C. The effects of China's cultivated land balance program on potential land productivity at a national scale. Applied Geography, 2014, 46: 158-170.
doi: 10.1016/j.apgeog.2013.11.009 |
[66] | Wang Qing, Yue Tianxiang, Lu Yimin, et al. Analysis of cultivated land food supply-demand-equilibrium in China. Resources Science, 2010, 32(9): 1710-1717. |
[王情, 岳天祥, 卢毅敏, 等. 中国耕地食物供需平衡分析. 资源科学, 2010, 32(9): 1710-1717.] | |
[67] | Huang Guoqin, Zhao Qiguo. A discussion on land fallow rotation problem. Ecology and Environmental Sciences, 2017, 26(2): 357-362. |
[黄国勤, 赵其国. 轮作休耕问题探讨. 生态环境学报, 2017, 26(2): 357-362.] | |
[68] | Li Fanfan, Liu Youzhao. A preliminary study on the fallow potential of cultivated land under the precondition of food security in China. Chinese Agricultural Science Bulletin, 2014, 30(Suppl.): 35-41. |
[李凡凡, 刘友兆. 中国粮食安全保障前提下耕地休耕潜力初探. 中国农学通报, 2014, 30(增刊): 35-41.] | |
[69] | Cheng Shengkui, Wang Shouyang, Liu Xu, et al. Food nutrition and food security of China in a new development phase. Chinese Science Bulletin, 2018, 63(18): 1764-1774. |
[成升魁, 汪寿阳, 刘旭, 等. 新时期我国国民营养与粮食安全. 科学通报, 2018, 63(18): 1764-1774.] | |
[70] |
Luo Xiang, Zeng Juxin, Zhu Yuanyuan, et al. Who will feed China: The role and explanation of China's farmland pressure in food security. Geographical Research, 2016, 35(12): 2216-2226.
doi: 10.11821/dlyj201612002 |
[罗翔, 曾菊新, 朱媛媛, 等. 谁来养活中国: 耕地压力在粮食安全中的作用及解释. 地理研究, 2016, 35(12): 2216-2226.] |
[1] | 林志慧, 刘宪锋, 陈瑛, 傅伯杰. 水—粮食—能源纽带关系研究进展与展望[J]. 地理学报, 2021, 76(7): 1591-1604. |
[2] | 刘宪锋, 傅伯杰. 干旱对作物产量影响研究进展与展望[J]. 地理学报, 2021, 76(11): 2632-2646. |
[3] | 马恩朴, 蔡建明, 林静, 郭华, 韩燕, 廖柳文. 2000—2014年全球粮食安全格局的时空演化及影响因素[J]. 地理学报, 2020, 75(2): 332-347. |
[4] | 蒋敏,李秀彬,辛良杰,谈明洪. 南方水稻复种指数变化对国家粮食产能的影响及其政策启示[J]. 地理学报, 2019, 74(1): 32-43. |
[5] | 余慧倩,张强,孙鹏,宋长青. 干旱强度及发生时间对华北平原五省冬小麦产量影响[J]. 地理学报, 2019, 74(1): 87-102. |
[6] | 马历,龙花楼,张英男,屠爽爽,戈大专. 中国县域农业劳动力变化与农业经济发展的时空耦合及其对乡村振兴的启示[J]. 地理学报, 2018, 73(12): 2364-2377. |
[7] | 杨庆媛,毕国华,陈展图,曾黎,杨人豪. 喀斯特生态脆弱区休耕地的空间配置研究——以贵州省晴隆县为例[J]. 地理学报, 2018, 73(11): 2250-2266. |
[8] | 冀咏赞, 闫慧敏, 刘纪远, 匡文慧, 胡云锋. 基于MODIS数据的中国耕地高中低产田空间分布格局[J]. 地理学报, 2015, 70(5): 766-778. |
[9] | 谢花林, 刘桂英. 1998-2012年中国耕地复种指数时空差异及动因[J]. 地理学报, 2015, 70(4): 604-614. |
[10] | 鲍超. 中国城镇化与经济增长及用水变化的时空耦合关系[J]. 地理学报, 2014, 69(12): 1799-1809. |
[11] | 宋小青, 欧阳竹. 1999-2007 年中国粮食安全的关键影响因素[J]. 地理学报, 2012, 67(6): 793-803. |
[12] | 刘斌涛, 刘邵权, 陶和平, 史展, 郭仕利, 曹伟超. 基于GIS的山区土地资源安全定量评价模型 ——以四川省凉山州为例[J]. 地理学报, 2011, 66(8): 1131-1140. |
[13] | 吴文斌, 唐华俊, 杨鹏, 周清波, 陈仲新, Ryosuke SHIBASAKI. 基于空间模型的全球粮食安全评价[J]. 地理学报, 2010, 65(8): 907-918. |
[14] | 刘彦随, 李裕瑞. 中国县域耕地与农业劳动力变化的时空耦合关系[J]. 地理学报, 2010, 65(12): 1602-1612. |
[15] | 殷培红, 方修琦. 中国粮食安全脆弱区的识别及空间分异特征[J]. 地理学报, 2008, 63(10): 1064-1072. |