地理学报 ›› 2021, Vol. 76 ›› Issue (12): 3119-3134.doi: 10.11821/dlxb202112017
赵荣钦1(), 余娇1,2, 肖连刚1, 孙锦1, 罗慧丽1, 杨文娟1, 揣小伟3, 焦士兴4
收稿日期:
2020-12-09
修回日期:
2021-08-13
出版日期:
2021-12-25
发布日期:
2022-02-25
作者简介:
赵荣钦(1978-), 男, 河南孟津人, 教授, 博导, 主要从事资源环境与碳排放研究。E-mail: zhaorq234@163.com
基金资助:
ZHAO Rongqin1(), YU Jiao1,2, XIAO Liangang1, SUN Jin1, LUO Huili1, YANG Wenjuan1, CHUAI Xiaowei3, JIAO Shixing4
Received:
2020-12-09
Revised:
2021-08-13
Published:
2021-12-25
Online:
2022-02-25
Supported by:
摘要:
揭示城市水系统与碳排放的内在关系机理,对于推动城市水能节约和水系统低碳运行具有重要的理论和实践意义。本文分析了城市水系统“水—能—碳”关联机理,并构建了城市水系统碳排放的核算体系,采用2008—2017年的统计数据和调查问卷等资料,对郑州市水系统碳排放进行了核算和实证分析,探讨了其“水—能—碳”关联特征,并分析了不同情景下水系统的碳减排潜力。结果显示:① 郑州市水系统碳排放涉及取水、给水、用水、排水及污水处理等不同环节。其中,用水系统是郑州市水系统碳排放的主要来源,这表明由城市扩展和人口增长导致的用水需求增加是碳排放增长的主要因素;② 郑州市水系统不同环节的碳排放构成及其强度具有较大差异。其中,用水和取水系统能耗和碳排放强度增长态势明显,而给水与排水及污水处理系统则相对稳定。取水和用水系统的能耗增加,特别是由城市远距离供水和污水回用引起的碳排放增长应引起关注;③ 郑州市水系统不同环节“水—能—碳”关联特征的差异主要受城市水消耗量的变化、水处理方式和工艺、居民用水行为习惯和节水意识、自然条件及气候变化等因素的影响;④ 未来应重点从城市工业和生活节水、水处理工艺改进、水系统能效提升等方面入手,降低水系统能源消耗和碳排放。
赵荣钦, 余娇, 肖连刚, 孙锦, 罗慧丽, 杨文娟, 揣小伟, 焦士兴. 基于“水—能—碳”关联的城市水系统碳排放研究[J]. 地理学报, 2021, 76(12): 3119-3134.
ZHAO Rongqin, YU Jiao, XIAO Liangang, SUN Jin, LUO Huili, YANG Wenjuan, CHUAI Xiaowei, JIAO Shixing. Carbon emissions of urban water system based on water-energy-carbon nexus[J]. Acta Geographica Sinica, 2021, 76(12): 3119-3134.
表1
2008—2017年郑州市取水系统的碳排放(万t)
取水模式 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|
蓄水工程 | 0.23 | 0.33 | 0.54 | 0.35 | 0.35 | 0.38 | 0.72 | 0.82 | 0.66 | 0.67 |
提水工程 | 0.20 | 0.15 | 0.12 | 0.16 | 0.26 | 0.32 | 0.79 | 0.17 | 0.53 | 0.76 |
引黄供水 | 3.45 | 3.94 | 5.42 | 3.50 | 3.93 | 3.57 | 3.36 | 2.71 | 2.20 | 2.24 |
南水北调 | 1.84 | 3.14 | 4.27 | |||||||
地下水供水 | 9.78 | 10.57 | 11.01 | 10.09 | 10.71 | 10.17 | 9.33 | 9.50 | 10.00 | 7.94 |
污水回用 | 1.79 | 1.79 | 1.74 | 1.74 | 2.57 | 2.80 | 3.59 | 3.61 | 4.12 | 8.82 |
雨水回用 | 0.87 | 0.87 | 1.11 | 0.93 | ||||||
总计 | 15.45 | 16.79 | 18.83 | 15.84 | 17.83 | 17.24 | 18.66 | 19.53 | 21.76 | 25.62 |
表2
2008—2017 年郑州市水系统碳排放占比
年份 | 水系统碳排放(万t) | 社会能源消费碳排放(万t) | 贡献率(%) |
---|---|---|---|
2008 | 583.58 | 5580.62 | 10.46 |
2009 | 604.92 | 5370.28 | 11.26 |
2010 | 742.04 | 5244.75 | 14.15 |
2011 | 699.39 | 5804.06 | 12.05 |
2012 | 733.57 | 6399.01 | 11.46 |
2013 | 680.55 | 6910.49 | 9.85 |
2014 | 716.63 | 6790.08 | 10.55 |
2015 | 746.45 | 6532.35 | 11.43 |
2016 | 770.79 | 6157.65 | 12.52 |
2017 | 833.16 | 6159.13 | 13.53 |
表3
2008—2017年郑州市水系统“水—能—碳”关联分析
子系统 | 类别 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 合计/均值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
取水系统 | 取水量(亿m3) | 16.29 | 17.42 | 20.23 | 16.25 | 17.03 | 15.99 | 16.32 | 16.73 | 18.00 | 18.65 | 172.92 |
能耗(亿kWh) | 1.93 | 2.10 | 2.35 | 1.98 | 2.23 | 2.15 | 2.33 | 2.44 | 2.72 | 3.20 | 23.41 | |
能耗强度(kWh/m3) | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 | 0.13 | 0.14 | 0.15 | 0.15 | 0.17 | 0.14 | |
碳排放(万t) | 15.45 | 16.79 | 18.83 | 15.84 | 17.83 | 17.24 | 18.66 | 19.53 | 21.76 | 25.62 | 187.55 | |
碳排放强度(kg/m3) | 0.09 | 0.10 | 0.09 | 0.10 | 0.10 | 0.11 | 0.11 | 0.12 | 0.12 | 0.14 | 0.11 | |
给水系统 | 给水量(亿m3) | 3.80 | 4.16 | 4.39 | 4.22 | 4.21 | 4.20 | 4.09 | 4.16 | 4.41 | 4.69 | 42.35 |
能耗(亿kWh) | 3.28 | 3.59 | 3.79 | 3.64 | 3.64 | 3.63 | 3.53 | 3.59 | 3.81 | 4.05 | 36.55 | |
能耗强度(kWh/m3) | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | |
碳排放(万t) | 26.25 | 28.78 | 30.37 | 29.18 | 29.14 | 29.06 | 28.26 | 28.78 | 30.50 | 32.43 | 292.74 | |
碳排放强度(kg/m3) | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | |
用水系统 | 用水量(亿m3) | 12.65 | 13.92 | 14.04 | 13.51 | 14.03 | 12.68 | 13.16 | 13.53 | 14.24 | 14.16 | 135.92 |
能耗(亿kWh) | 85.16 | 87.85 | 109.88 | 103.46 | 108.42 | 99.50 | 105.75 | 109.83 | 112.86 | 121.17 | 1043.88 | |
能耗强度(kWh/m3) | 6.73 | 6.31 | 7.83 | 7.66 | 7.73 | 7.85 | 8.04 | 8.12 | 7.93 | 8.56 | 7.68 | |
碳排放(万t) | 535.97 | 552.56 | 685.83 | 647.29 | 679.67 | 624.91 | 661.80 | 687.76 | 707.61 | 760.79 | 6544.20 | |
碳排放强度(kg/m3) | 4.24 | 3.97 | 4.88 | 4.79 | 4.84 | 4.93 | 5.03 | 5.08 | 4.97 | 5.37 | 4.81 | |
排水及 污水处 理系统 | 污水处理量(亿m3) | 2.62 | 3.02 | 3.12 | 3.15 | 3.08 | 4.15 | 3.51 | 4.62 | 4.85 | 6.36 | 38.47 |
能耗(亿kWh) | 0.74 | 0.85 | 0.88 | 0.88 | 0.86 | 1.17 | 0.99 | 1.30 | 1.36 | 1.79 | 10.81 | |
能耗强度(kWh/m3) | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | |
碳排放(万t) | 5.90 | 6.79 | 7.02 | 7.08 | 6.93 | 9.34 | 7.91 | 10.39 | 10.92 | 14.32 | 86.59 | |
碳排放强度(kg/m3) | 0.23 | 0.22 | 0.23 | 0.22 | 0.23 | 0.23 | 0.23 | 0.22 | 0.23 | 0.23 | 0.23 | |
城市水 系统 (合计) | 总水量(亿m3) | 35.36 | 38.52 | 41.78 | 37.13 | 38.35 | 37.02 | 37.08 | 39.04 | 41.50 | 43.86 | 389.66 |
能耗(亿kWh) | 91.10 | 94.39 | 116.90 | 109.96 | 115.15 | 106.45 | 112.59 | 117.16 | 120.74 | 130.21 | 1114.65 | |
能耗强度(kWh/m3) | 2.58 | 2.45 | 2.80 | 2.96 | 3.00 | 2.88 | 3.04 | 3.00 | 2.91 | 2.97 | 2.86 | |
碳排放(万t) | 583.58 | 604.92 | 742.04 | 699.39 | 733.57 | 680.55 | 716.63 | 746.45 | 770.79 | 833.16 | 7111.09 | |
碳排放强度(kg/m3) | 1.65 | 1.57 | 1.78 | 1.88 | 1.91 | 1.84 | 1.93 | 1.91 | 1.86 | 1.90 | 1.82 |
[1] |
Zhao Rongqin, Li Zhiping, Han Yuping, et al. The coupling interaction mechanism of regional water-land-energy-carbon system. Acta Geographica Sinica, 2016, 71(9): 1613-1628.
doi: 10.11821/dlxb201609012 |
[赵荣钦, 李志萍, 韩宇平, 等. 区域“水—土—能—碳”耦合作用机制分析. 地理学报, 2016, 71(9): 1613-1628.] | |
[2] | Zhu Yongxia. Study on energy consumption evaluation method during the whole process of social water cycle[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017. |
[朱永霞. 社会水循环全过程能耗评价方法研究[D]. 北京: 中国水利水电科学研究院, 2017.] | |
[3] | Qin Huapeng, Yuan Huizhou. Urban Water System and Carbon Emission. Beijing: Science Press, 2014. |
[秦华鹏, 袁辉洲. 城市水系统与碳排放. 北京: 科学出版社, 2014.] | |
[4] | California Energy Commission. California's Water-Energy Relationship, Final Staff Report. Sacramento: CEC, 2005. |
[5] |
Lee M, Keller A A, Chiang P C, et al. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks. Applied Energy, 2017, 205: 589-601.
doi: 10.1016/j.apenergy.2017.08.002 |
[6] |
Venkatesh G, Brattebø H. Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway). Energy, 2011, 36(2): 792-800.
doi: 10.1016/j.energy.2010.12.040 |
[7] | Kenway S J, Priestley A, Cook S, et al. Energy use in the provision and consumption of urban water in Australia and New Zealand. CSIRO: Water for a Healthy Country National Research Flagship, 2008. |
[8] | Valek A M, Sušnik J, Grafakos S. Quantification of the urban water-energy nexus in México City, México, with an assessment of water-system related carbon emissions. Science of the Total Environment, 2017, 590-591: 258-268. |
[9] |
Cheung C T, Mui K W, Wong L T. Energy efficiency of elevated water supply tanks for high-rise buildings. Applied Energy, 2013, 103: 685-691.
doi: 10.1016/j.apenergy.2012.10.041 |
[10] |
DeNooyer T A, Peschel J M, Zhang Z X, et al. Integrating water resources and power generation: The energy-water nexus in Illinois. Applied Energy, 2016, 162: 363-371.
doi: 10.1016/j.apenergy.2015.10.071 |
[11] | Segurado R, Costa M, Duić N, et al. Integrated analysis of energy and water supply in Islands. Case study of S. Vicente, Cape Verde. Energy, 2015, 92: 639-648. |
[12] |
Vieira A S, Ghisi E. Water-energy nexus in low-income houses in Brazil: The influence of integrated on-site water and sewage management strategies on the energy consumption of water and sewerage services. Journal of Cleaner Production, 2016, 133: 145-162.
doi: 10.1016/j.jclepro.2016.05.104 |
[13] |
Zhou Y C, Zhang B, Wang H K, et al. Drops of energy: Conserving urban water to reduce greenhouse gas emissions. Environmental Science & Technology, 2013, 47(19): 10753-10761.
doi: 10.1021/es304816h |
[14] | Zuo Yeying, Xu Xiaotian. Research progress of the sustainability of city water system. Environment and Sustainable Development, 2014, 39(5): 90-93. |
[左叶颖, 许效天. 城市水系统的可持续性研究进展. 环境与可持续发展, 2014, 39(5): 90-93.] | |
[15] | Zhou Luming, Xie Xinghua, Yu Li, et al. Water-energy-economy coupling relationship in water resources management. Water Resources and Power, 2019, 37(4): 144-147, 166. |
[周露明, 谢兴华, 余丽, 等. 水资源管理中的水—能源—经济耦合关系. 水电能源科学, 2019, 37(4): 144-147, 166.] | |
[16] | Yan Xu, Qiu Dezhi, Guo Dongli, et al. Emission inventory of greenhouse gas from urban wastewater treatment plants and its temporal and spatial distribution in China. Environmental Science, 2018, 39(3): 1256-1263. |
[闫旭, 邱德志, 郭东丽, 等. 中国城镇污水处理厂温室气体排放时空分布特征. 环境科学, 2018, 39(3): 1256-1263.] | |
[17] | Wang Yongqin, Zhou Ye, Zhang Rong. A review of the research methods on influencing factors of carbon emissions and carbon footprint. Environmental Engineering, 2017, 35(1): 155-159. |
[王永琴, 周叶, 张荣. 碳排放影响因子与碳足迹文献综述: 基于研究方法视角. 环境工程, 2017, 35(1): 155-159.] | |
[18] |
Dale A T, Bilec M M. The Regional Energy & Water Supply Scenarios (REWSS) model, Part I: Framework, procedure, and validation. Sustainable Energy Technologies and Assessments, 2014, 7: 227-236.
doi: 10.1016/j.seta.2014.02.003 |
[19] |
Kenway S J, Scheidegger R, Larsen T A, et al. Water-related energy in households: A model designed to understand the current state and simulate possible measures. Energy and Buildings, 2013, 58: 378-389.
doi: 10.1016/j.enbuild.2012.08.035 |
[20] |
Zawartka P, Burchart-Korol D, Blaut A. Model of carbon footprint assessment for the life cycle of the system of wastewater collection, transport and treatment. Scientific Reports, 2020, 10(1): 5799. DOI: 10.1038/s41598-020-6279 8-y.
doi: 10.1038/s41598-020-62798-y pmid: 32242041 |
[21] |
Chhipi-Shrestha G, Hewage K, Sadiq R. Water-energy-carbon nexus modeling for urban water systems: System dynamics approach. Journal of Water Resources Planning and Management, 2017, 143(6): 04017016. DOI: 10.1061/(ASCE)WR.1943-5452.0000765.
doi: 10.1061/(ASCE)WR.1943-5452.0000765 |
[22] | Li Lu, Chen Yuansheng, He Xiwu, et al. Studies on water-energy relationship in urban water system. China Water Resources, 2012(6): 22-25. |
[李璐, 陈远生, 何希吾, 等. 城市水系统水—能关系研究进展. 中国水利, 2012(6): 22-25.] | |
[23] |
Liu J H, Chen S L, Wang H, et al. Calculation of carbon footprints for water diversion and desalination projects. Energy Procedia, 2015, 75: 2483-2494.
doi: 10.1016/j.egypro.2015.07.239 |
[24] |
Friedrich E, Pillay S, Buckley C A. Carbon footprint analysis for increasing water supply and sanitation in South Africa: A case study. Journal of Cleaner Production, 2009, 17(1): 1-12.
doi: 10.1016/j.jclepro.2008.03.004 |
[25] | Kang Liang, Wang Junyou. Discussion on water-saving and consumption reduction measures in thermal power plants. Electric Power Environmental Protection, 2008, 24(2): 40-43. |
[康亮, 王俊有. 火电厂节水降耗措施. 电力环境保护, 2008, 24(2): 40-43.] | |
[26] |
Li C, Wang Y, Qiu G Y. Water and energy consumption by agriculture in the Minqin oasis region. Journal of Integrative Agriculture, 2013, 12(8): 1330-1340.
doi: 10.1016/S2095-3119(13)60542-0 |
[27] |
Rothausen S G S A, Conway D. Greenhouse-gas emissions from energy use in the water sector. Nature Climate Change, 2011, 1(4): 210-219.
doi: 10.1038/nclimate1147 |
[28] |
Zhou N, Zhang J J, Khanna N, et al. Intertwined impacts of water, energy development, and carbon emissions in China. Applied Energy, 2019, 238: 78-91.
doi: 10.1016/j.apenergy.2018.12.085 |
[29] |
Singh P, Kansal A, Carliell-Marquet C. Energy and carbon footprints of sewage treatment methods. Journal of Environmental Management, 2016, 165: 22-30.
doi: 10.1016/j.jenvman.2015.09.017 |
[30] | Xie Tao, Wang Chengwen. Greenhouse gas emissions from wastewater treatment plants. Journal of Tsinghua University (Science and Technology), 2012, 52(4): 473-477. |
[谢淘, 汪诚文. 污水处理厂温室气体排放评估. 清华大学学报(自然科学版), 2012, 52(4): 473-477.] | |
[31] | Jiang Shan. Scientific concept of water-energy nexus and coupling simulation[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2017. |
[姜珊. 水—能源纽带关系解析与耦合模拟[D]. 北京: 中国水利水电科学研究院, 2017.] | |
[32] |
Xiang X Z, Jia S F. China's water-energy nexus: Assessment of water-related energy use. Resources, Conservation and Recycling, 2019, 144: 32-38.
doi: 10.1016/j.resconrec.2019.01.009 |
[33] | Hou Chunxi. Based on construction of ecological city of Zhengzhou Yellow River project plan research[D]. Zhengzhou: Zhengzhou University, 2016. |
[侯春喜. 基于郑州生态城市建设引黄工程方案研究[D]. 郑州: 郑州大学, 2016.] | |
[34] | Meng Chunli, Li Sao, Guo Hui. Analysis on dynamic change pattern of groundwater in Zhengzhou City. Water Resources & South to North Water Diversion, 2014(16): 3-4. |
[孟春丽, 李骚, 郭辉. 浅析郑州市地下水动态变化规律. 河南水利与南水北调, 2014(16): 3-4.] | |
[35] |
Liu J G, Zang C F, Tian S Y, et al. Water conservancy projects in China: Achievements, challenges and way forward. Global Environmental Change, 2013, 23(3): 633-643.
doi: 10.1016/j.gloenvcha.2013.02.002 |
[36] |
Meng F X, Liu G Y, Liang S, et al. Critical review of the energy-water-carbon nexus in cities. Energy, 2019, 171: 1017-1032.
doi: 10.1016/j.energy.2019.01.048 |
[37] | Wu Xiaodong. Study on water balance test and water saving measures in a steel company. Yangtze River, 2014, 45(Suppl.2): 227-228. |
[吴晓东. 某钢铁厂水平衡测试及节水措施研究. 人民长江, 2014, 45(Suppl.2): 227-228.] | |
[38] | Wang Bingxuan. Assessment of water utilization level in petrochemical enterprises[D]. Yangling: Northwest A & F University, 2016. |
[王炳轩. 石化企业用水水平评价研究[D]. 杨凌: 西北农林科技大学, 2016.] | |
[39] | Liu Hongshu, Wang Baoqing, Liu Dongfang, et al. Study on water-saving potential for automobile-manufacturing enterprises. Water & Wastewater Engineering, 2009, 45(8): 64-66. |
[刘红姝, 王宝庆, 刘东方, 等. 汽车生产企业节水潜力研究. 给水排水, 2009, 45(8): 64-66.] | |
[40] | Yu Jiao, Zhao Rongqin, Hou Lipeng, et al. Study on the relationship between land-use efficiency and carbon emission intensity of typical industrial land in Zhengzhou: Based on the investigation data of 181 enterprises. China Land Science, 2018, 32(8): 74-80. |
[余娇, 赵荣钦, 侯丽朋, 等. 郑州市典型产业用地效益与碳排放强度的关系研究: 基于181家企业的调查. 中国土地科学, 2018, 32(8): 74-80.] | |
[41] | Wang Ying, Chen Yuansheng, Weng Jianwu, et al. Characteristic analyze of public domestic water of Beijing City. Water & Wastewater Engineering, 2008, 34(11): 138-143. |
[王莹, 陈远生, 翁建武, 等. 北京市城市公共生活用水特征分析. 给水排水, 2008, 34(11): 138-143.] | |
[42] | Hu Yajie, Che Jianming, Ma Jing, et al. Water consumption of Beijing's government departments and institutions. China Water Resources, 2014(17): 22-24. |
[胡雅杰, 车建明, 马静, 等. 北京市机关单位用水分析. 中国水利, 2014(17): 22-24.] | |
[43] | Yu Jiao, Zhao Rongqin, Xiao Liangang, et al. Carbon emissions of urban wastewater treatment system based on the "water-energy-carbon" nexus. Resources Science, 2020, 42(6): 1052-1062. |
[余娇, 赵荣钦, 肖连刚, 等. 基于“水—能—碳”关联的城市污水处理系统碳排放研究. 资源科学, 2020, 42(6): 1052-1062.] | |
[44] | Gao Jinjing. The nexus of water resource and electricity production in China[D]. Tianjin: Tianjin University, 2012. |
[高津京. 我国水资源利用与电力生产关联分析[D]. 天津: 天津大学, 2012.] | |
[45] | Mei Xiaole, Zhou Yan. Discussion on municipal wastewater treatment plant energy-saving evaluation standards. Water & Wastewater Engineering, 2011, 47(3): 45-49. |
[梅小乐, 周燕. 城市污水处理厂节能水平评估标准探讨. 给水排水, 2011, 47(3): 45-49.] | |
[46] | Deng Min. Evaluation of water resources carrying capacity of Zhengzhou city based on "three red lines"[D]. Zhengzhou: Zhengzhou University, 2018. |
[邓敏. 基于“三条红线”的郑州市水资源承载力评价研究[D]. 郑州: 郑州大学, 2018.] | |
[47] | Wang Limin, Sun Huan, Yang Hong, et al. Water resource carrying capacity in Zhengzhou city. Chinese Agricultural Science Bulletin, 2015, 31(20): 101-108. |
[王丽敏, 孙环, 杨宏, 等. 郑州市水资源承载力评价研究. 中国农学通报, 2015, 31(20): 101-108.] |
[1] | 王少剑, 谢紫寒, 王泽宏. 中国县域碳排放的时空演变及影响因素[J]. 地理学报, 2021, 76(12): 3103-3118. |
[2] | 崔耀平, 李楠, 付一鸣, 陈良雨. 中美俄加陆域碳汇对人为增温的消减贡献[J]. 地理学报, 2021, 76(1): 167-177. |
[3] | 潘竟虎, 张永年. 中国能源碳足迹时空格局演化及脱钩效应[J]. 地理学报, 2021, 76(1): 206-222. |
[4] | 杨默远, 刘昌明, 潘兴瑶, 梁康. 基于水循环视角的海绵城市系统及研究要点解析[J]. 地理学报, 2020, 75(9): 1831-1844. |
[5] | 王少剑, 高爽, 黄永源, 史晨怡. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报, 2020, 75(6): 1316-1330. |
[6] | 王少剑,黄永源. 中国城市碳排放强度的空间溢出效应及驱动因素[J]. 地理学报, 2019, 74(6): 1131-1148. |
[7] | 王少剑,苏泳娴,赵亚博. 中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J]. 地理学报, 2018, 73(3): 414-428. |
[8] | 杨文越,曹小曙. 居住自选择视角下的广州出行碳排放影响机理[J]. 地理学报, 2018, 73(2): 346-361. |
[9] | 王长建, 张小雷, 张虹鸥, 汪菲. 基于IO-SDA模型的新疆能源消费碳排放影响机理分析[J]. 地理学报, 2016, 71(7): 1105-1118. |
[10] | 刘昌明, 王中根, 杨胜天, 桑燕芳, 刘小莽, 李军. 地表物质能量交换过程中的水循环综合模拟系统(HIMS)研究进展[J]. 地理学报, 2014, 69(5): 579-587. |
[11] | 唐志鹏, 刘卫东, 公丕萍. 出口对中国区域碳排放影响的空间效应测度——基于1997-2007年区域间投入产出表的实证分析[J]. 地理学报, 2014, 69(10): 1403-1413. |
[12] | 陶玉国, 黄震方, 吴丽敏, 余凤龙, 王坤. 江苏省区域旅游业碳排放测度及其因素分解[J]. 地理学报, 2014, 69(10): 1438-1448. |
[13] | 苏泳娴, 陈修治, 叶玉瑶, 吴旗韬, 张虹鸥, 黄宁生, 匡耀求. 基于夜间灯光数据的中国能源消费碳排放特征及机理[J]. 地理学报, 2013, 68(11): 1513-1526. |
[14] | 程叶青, 王哲野, 张守志, 叶信岳, 姜会明. 中国能源消费碳排放强度及其影响因素的空间计量[J]. 地理学报, 2013, 68(10): 1418-1431. |
[15] | 石敏俊, 王妍, 张卓颖, 周新. 中国各省区碳足迹与碳排放空间转移[J]. 地理学报, 2012, 67(10): 1327-1338. |