地理学报 ›› 2021, Vol. 76 ›› Issue (12): 2964-2977.doi: 10.11821/dlxb202112007
收稿日期:
2020-10-23
修回日期:
2021-05-20
出版日期:
2021-12-25
发布日期:
2022-02-25
作者简介:
蒲英霞(1972-), 女, 山东日照人, 博士, 副教授, 主要从事GIS与空间数据分析集成、区域人口迁移建模与复杂地理计算。E-mail: yingxiapu@nju.edu.cn
基金资助:
PU Yingxia1,2,3(), WU Zhenwei1, GE Ying4, KONG Fanhua1
Received:
2020-10-23
Revised:
2021-05-20
Published:
2021-12-25
Online:
2022-02-25
Supported by:
摘要:
人口迁移过程具有内在的不确定性。贝叶斯模型平均方法(BMA)为不确定性问题提供了行之有效的解决方案。然而,当前该方法多用于线性回归模型在变量选择时出现的模型不确定性问题,很少用于空间建模。本文以2010—2015年中国省际人口迁移流为例,将BMA方法应用于空间OD模型,在考虑网络空间结构的基础上选取迁出地和迁入地各7个解释变量及距离因素,利用马尔可夫链—蒙特卡罗模型综合方法(MC3)进行模型抽样,以后验模型概率为权重计算相应变量的迁出地、迁入地和网络效应等,定量分析不确定性背景下省际人口迁移影响因素和空间机制。结果表明:① BMA模型估计结果更为稳健可靠。与单一模型相比,BMA中变量效应估计的90%可信区间明显缩小,不确定性程度显著降低,结果更为精确;② 区域经济社会发展对省际迁移至关重要。经模型空间抽样后,迁出地人口规模和GDP、迁入地教育水平和迁移存量等的变量后验包含概率大于90%;③ 网络效应在省际迁移过程中不可忽视。所有变量的网络效应占总体效应的40%以上,其中工资、城镇化率、教育和迁移存量等的网络效应(绝对值)大于各自的迁出地和迁入地效应;④ 若不考虑迁移建模中的不确定性,绝大多数区域经济社会变量对省际迁移的影响会被高估。
蒲英霞, 武振伟, 葛莹, 孔繁花. 不确定性视角下的中国省际人口迁移机制分析[J]. 地理学报, 2021, 76(12): 2964-2977.
PU Yingxia, WU Zhenwei, GE Ying, KONG Fanhua. Analyzing the spatial mechanism of interprovincial migration in China under uncertainty[J]. Acta Geographica Sinica, 2021, 76(12): 2964-2977.
表1
模型解释变量描述
变量名称 | 变量描述(单位) | 预期迁出地/迁入地效应 |
---|---|---|
O_POP/D_POP | 迁出地/迁入地2010年常住人口总数(万人) | +/+ |
O_GDP/D_GDP | 迁出地/迁入地2010年地区生产总值(亿元) | -/+ |
O_Wage/D_Wage | 迁出地/迁入地2010年城镇职工平均工资(元) | -/+ |
O_Urban/D_Urban | 迁出地/迁入地2010年城镇化率(%) | +/+ |
O_HB/D_HB | 迁出地/迁入地2010年每千人医疗卫生机构床位数(张) | +/+ |
O_Edu/D_Edu | 迁出地/迁入地2010年每十万人口拥有大专及以上人数(人) | +/+ |
O_Flow/D_Flow | 2005—2010年间地区迁出/迁入总量(人) | +/+ |
Distance | 省会城市之间2010年铁路运输最短时间(s) | - |
表2
空间OD模型中后验概率最大的10个模型
变量 | 后验概率模型 | 后验包含概率 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | ||
O_POP | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.924 |
O_GDP | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.925 |
O_Wage | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0.456 |
O_Urban | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0.797 |
O_HB | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0.696 |
O_Edu | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0.459 |
O_Flow | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.238 |
D_POP | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.459 |
D_GDP | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0.446 |
D_Wage | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0.839 |
D_Urban | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0.824 |
D_HB | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.205 |
D_Edu | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.923 |
D_Flow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.962 |
Distance | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.926 |
后验概率 | 0.017 | 0.019 | 0.019 | 0.019 | 0.026 | 0.049 | 0.058 | 0.063 | 0.095 | 0.405 |
表3
BMA加权后的空间OD模型各系数估计的后验均值与90%可信区间
变量 | Lower 5% | 均值 | Upper 95% | 变量 | Lower 5% | 均值 | Upper 95% |
---|---|---|---|---|---|---|---|
Const | 3.329 | 3.664 | 4.041 | Distance | -0.311 | -0.283 | -0.254 |
O_POP | 1.057 | 1.165 | 1.282 | D_POP | 0.099 | 0.111 | 0.122 |
O_GDP | -0.887 | -0.759 | -0.648 | D_GDP | -0.108 | -0.095 | -0.080 |
O_Wage | -0.029 | -0.019 | -0.010 | D_Wage | -0.300 | -0.274 | -0.246 |
O_Urban | 0.050 | 0.106 | 0.168 | D_Urban | -0.392 | -0.352 | -0.308 |
O_HB | 0.091 | 0.113 | 0.139 | D_HB | 0.000 | 0.001 | 0.003 |
O_Edu | 0.064 | 0.074 | 0.085 | D_Edu | 0.363 | 0.404 | 0.449 |
O_Flow | -0.005 | -0.003 | -0.001 | D_Flow | 0.609 | 0.639 | 0.671 |
ρ | 0.579 | 0.616 | 0.652 |
表4
BMA加权后空间OD模型中各解释变量的效应分布
变量 | 总体效应 | 迁出地效应 | 迁入地效应 | 网络效应 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower 5% | 均值 | Upper 95% | Lower 5% | 均值 | Upper 95% | Lower 5% | 均值 | Upper 95% | Lower 5% | 均值 | Upper 95% | ||||
POP | 2.281 | 3.254 | 3.809 | 1.511 | 1.712 | 1.909 | 0.137 | 0.156 | 0.175 | 1.128 | 1.386 | 1.729 | |||
GDP | -2.611 | -2.172 | -1.775 | -1.307 | -1.116 | -0.917 | -0.144 | -0.125 | -0.107 | -1.201 | -0.931 | -0.737 | |||
Wage | -0.870 | -0.732 | -0.621 | -0.056 | -0.040 | -0.025 | -0.322 | -0.291 | -0.257 | -0.520 | -0.402 | -0.325 | |||
Urban | -0.847 | -0.609 | -0.405 | 0.051 | 0.141 | 0.231 | -0.428 | -0.371 | -0.315 | -0.523 | -0.379 | -0.272 | |||
HB | 0.224 | 0.295 | 0.386 | 0.127 | 0.166 | 0.206 | 0.003 | 0.005 | 0.008 | 0.087 | 0.124 | 0.175 | |||
Edu | 1.023 | 1.191 | 1.395 | 0.106 | 0.125 | 0.144 | 0.378 | 0.430 | 0.482 | 0.521 | 0.635 | 0.793 | |||
Flow | 1.392 | 1.592 | 1.841 | 0.018 | 0.025 | 0.032 | 0.631 | 0.680 | 0.726 | 0.732 | 0.887 | 1.093 |
表5
全要素空间OD模型(单一模型)各变量的效应分布
变量 | 总体效应 | 迁出地效应 | 迁入地效应 | 网络效应 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower 5% | 均值 | Upper 95% | Lower 5% | 均值 | Upper 95% | Lower 5% | 均值 | Upper 95% | Lower 5% | 均值 | Upper 95% | ||||
POP | 2.862 | 4.609 | 6.832 | 1.270 | 2.012 | 2.842 | 0.178 | 0.519 | 0.863 | 1.061 | 2.077 | 3.566 | |||
GDP | -4.281 | -2.764 | -1.456 | -1.682 | -1.090 | -0.546 | -0.764 | -0.398 | -0.089 | -2.270 | -1.275 | -0.618 | |||
Wage | -5.202 | -3.267 | -1.628 | -1.060 | -0.496 | 0.060 | -1.539 | -1.064 | -0.563 | -3.037 | -1.707 | -0.901 | |||
Urban | -4.327 | -1.776 | 0.282 | -0.597 | 0.314 | 1.273 | -1.572 | -1.013 | -0.474 | -2.400 | -1.077 | -0.045 | |||
HB | -0.145 | 1.383 | 3.118 | -0.188 | 0.577 | 1.269 | -0.243 | 0.176 | 0.571 | -0.090 | 0.630 | 1.536 | |||
Edu | 1.680 | 3.431 | 5.558 | -0.067 | 0.596 | 1.258 | 0.617 | 1.060 | 1.495 | 0.834 | 1.775 | 3.072 | |||
Flow | 0.764 | 1.300 | 1.918 | -0.245 | -0.020 | 0.183 | 0.466 | 0.585 | 0.710 | 0.429 | 0.735 | 1.154 |
[1] | Keynes J M. A Treatise on Probability. London: Macmillan, 1921. |
[2] | Knight F H. Risk, Uncertainty and Profit. Chicago: University of Chicago Press, 1921. |
[3] | Wu Lun, Yu Hailong, Gao Zhenji, et al. The frame of GIS uncertainty and methods of GIS data uncertainty. Geography and Territorial Research, 2002, 18(4): 1-5. |
[邬伦, 于海龙, 高振纪, 等. GIS不确定性框架体系与数据不确定性研究方法. 地理学与国土研究, 2002, 18(4): 1-5.] | |
[4] | Taleb N N. The Black Swan: The Impact of the Highly Improbable. New York: Random House, 2007. |
[5] | Ji Xiaolei. Uncertain Age: Global Recession and Chance for China. Guangzhou: Guangdong Tourism Press, 2012. |
[季晓磊. 不确定时代: 全球衰退与中国机会. 广州: 广东旅游出版社, 2012.] | |
[6] |
Hansen L P. Nobel lecture: Uncertainty outside and inside econometric models. Journal of Political Economy, 2014, 122: 5. DOI: 10.1086/678456.
doi: 10.1086/678456 |
[7] |
Cheng Changxiu, Shi Peijun, Song Changqing, et al. Geographic big-data: A new opportunity for geography complexity study. Acta Geographica Sinica, 2018, 73(8): 1397-1406.
doi: 10.11821/dlxb201808001 |
[程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇. 地理学报, 2018, 73(8): 1397-1406.] | |
[8] | Sakai Y J M. Keynes versus F.H. Knight: Risk, Probability, and Uncertainty. Singapore: Springer Nature Singapore Pte Ltd., 2019. |
[9] | Wang Xiaoqin, Tian Zhengang. Uncertainty and its impacts on rural-urban migration in China. China Agricultural Economy, 2001(7): 16-20. |
[汪小勤, 田振刚. 论我国城乡人口迁移中的不确定性及其影响. 中国农村经济, 2001(7): 16-20.] | |
[10] | Bijak J. Forecasting International Migration in Europe: A Bayesian View. London: Springer Science Business Media, 2011. |
[11] |
Williams A M, Baláž V. Migration, risk and uncertainty: Theoretical perspectives. Population, Space and Place, 2012, 18: 167-180.
doi: 10.1002/psp.663 |
[12] |
Bijak J, Bryant J. Bayesian demography 250 years after Bayes. Population Studies, 2016, 70(1): 1-19.
doi: 10.1080/00324728.2015.1122826 |
[13] |
LeSage J P, Pace R K. Spatial econometric modeling of origin-destination flows. Journal of Regional Science, 2008, 48(5): 941-967.
doi: 10.1111/jors.2008.48.issue-5 |
[14] | Fischer M M, Wang J. Spatial Data Analysis: Models, Methods and Techniques. Heidelberg: Springer, 2011. |
[15] |
LeSage J P, Thomas-Agnan C. Interpreting spatial econometric origin-destination flow models. Journal of Regional Science, 2015, 55(2): 188-208.
doi: 10.1111/jors.12114 |
[16] | Lian Lei. An empirical study on the spatial effects in the migration. Population and Economics, 2016(2): 30-39. |
[连蕾. 我国人口迁移过程中的空间效应实证研究. 人口与经济, 2016(2): 30-39.] | |
[17] |
Pu Yingxia, Han Hongling, Ge Ying, et al. Multilateral mechanism analysis of interprovincial migration flows in China. Acta Geographica Sinica, 2016, 71(2): 205-216.
doi: 10.11821/dlxb201602003 |
[蒲英霞, 韩洪凌, 葛莹, 等. 中国省际人口迁移的多边效应机制分析. 地理学报, 2016, 71(2): 205-216.] | |
[18] | Zhang Hongli, Liang Yinhe, Yang Weiqiong. Market potential, expected wages and interprovincial migration: Based on spatial econometrics model. Journal of Applied Statistics and Management, 2016, 35(5): 868-880. |
[张红历, 梁银鹤, 杨维琼. 市场潜能、预期收入与跨省人口流动: 基于空间计量模型的分析. 数量统计与管理, 2016, 35(5): 868-880.] | |
[19] |
Gu Hengyu, Shen Tiyan, Liu Zixiang, et al. Driving mechanism of interprovincial population migration flows in China based on spatial filtering. Acta Geographica Sinica, 2019, 74(2): 222-237.
doi: 10.11821/dlxb201902002 |
[古恒宇, 沈体雁, 刘子亮, 等. 基于空间滤波方法的中国省际人口迁移驱动因素. 地理学报, 2019, 74(2): 222-237.] | |
[20] | Shi Bo, Zhang Xinyue. Technology accumulation, spatial spillover and population migration. China Population, Resources and Environment, 2019, 29(2): 156-165. |
[师博, 张新月. 技术积累、空间溢出与人口迁移. 中国人口·资源与环境, 2019, 29(2): 156-165.] | |
[21] | Parent O, LeSage J P. Spatial econometric model averaging//Fishcer M M, Getis A. Handbook of Applied Spatial Analysis. Berlin: Springer-Verlag, 2010: 35-460. |
[22] | Morgan M G, Henrion M, Small M. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge: Cambridge University Press, 1990. |
[23] | The State Council, People's Republic of China. National plan on population development during the 2016-2030 period. http://english.www.gov.cn/policies/latest_releases/2017/01/25/content_281475551306587.htm, 2017-01-25. |
[国务院. 国家人口发展规划(2016—2030年). http://www.gov.cn/zhengce/content/2017-01/25/content_5163309.htm, 2017-01-25.] | |
[24] | Draper D. Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society, 1995, 57(1): 45-97. |
[25] | Ando T. Bayesian Model Selection and Statistical Modelling. Boca Raton: CRC Press, 2010. |
[26] |
Chib S. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 1995, 90(432): 1313-1321.
doi: 10.1080/01621459.1995.10476635 |
[27] |
Madigan D, York J, Allard D. Bayesian graphical models for discrete data. International Statistical Review, 1995, 63(2): 215-232.
doi: 10.2307/1403615 |
[28] |
Fernández C, Ley E, Steel M F J. Model uncertainty in cross-country growth regressions. Journal of Applied Econometrics, 2001, 16(5): 563-576.
doi: 10.1002/jae.623 |
[29] |
León-González R, Montolio D. Growth, convergence and public investment: A Bayesian model averaging approach. Applied Economics, 2004, 36(17): 1925-1936.
doi: 10.1080/0003684042000245534 |
[30] | Tsai FT-C. Bayesian model averaging assessment on groundwater management under model structure uncertainty. Stochastic Environmental Research & Risk Assessment, 2010, 24(6): 845-861. |
[31] |
Horvath R. Research & development and growth: A Bayesian model averaging analysis. Economic Modelling, 2011, 28(6): 2669-2673.
doi: 10.1016/j.econmod.2011.08.007 |
[32] |
Feldkircher M, Horvath R, Rusnak M. Exchange market pressures during the financial crisis: A Bayesian model averaging evidence. Journal of International Money and Finance, 2014, 40(2): 21-41.
doi: 10.1016/j.jimonfin.2013.08.021 |
[33] |
LeSage J P, Parent O. Bayesian model averaging for spatial econometric models. Geographical Analysis, 2007, 39(3): 241-267.
doi: 10.1111/gean.2007.39.issue-3 |
[34] | LeSage J P, Fischer M M. Spatial regression-based model specifications for exogeneous and endogenous spatial interaction//Patuelli R, Arbia G. Spatial Econometric Interaction Modelling. Switzerland: Springer International Publishing, 2016: 15-36. |
[35] | The Communist Party of China (CPC) Central Committee and the State Council, People's Republic of China. Guideline on improving the market-based allocation mechanism of production factors. http://english.www.gov.cn/policies/latestreleases/202004/10/content_WS5e8faa09c6d0c201c2cc0922.html, 2020-04-10. |
[中共中央、国务院. 关于构建更加完善的要素市场化配置体制机制的意见. http://www.gov.cn/zhengce/2020-04/09/content_5500622.html, 2020-04-09.] | |
[36] | Hoeting J A, Madigan D, Raftery A E, et al. Bayesian model averaging: A tutorial. Statistical Science, 1999, 14(4): 382-401. |
[37] | Wang Liang. Overview and prospects of Bayesian model averaging. Journal of Technical Economics & Management, 2016(3): 19-23. |
[王亮. 贝叶斯模型平均方法研究综述与展望. 技术经济与管理研究, 2016(3): 19-23.] | |
[38] | LeSage J P, Pace R K. Introduction to Spatial Econometrics. Boca Raton: CRC Press, Taylor & Francis Group, 2009. |
[39] | Zheng Jingping. The new normal and suggestions of China's economy. China Development Observation, 2014(11): 42-44. |
[郑京平. 中国经济的新常态及应对建议. 中国发展观察, 2014(11): 42-44.] | |
[40] | Li Jianmin. China's new normal in population and economy. Population Research, 2015, 39(1): 3-13. |
[李建民. 我国的人口新常态与经济新常态. 人口研究, 2015, 39(1): 3-13.] | |
[41] | Migrant Population Division under National Health and Family Planning Commissions, P. R. China. China's Floating Population Development Report (2017). Beijing: China Population Publishing House, 2017. |
[国家卫生和计划生育委员会流动人口司. 中国流动人口发展报告(2017). 北京: 中国人口出版社, 2017.] | |
[42] | Wang Guixin, Pan Zehan. China's floating population spatial distribution and influencing factors: Evidence from year 2020 population census of China. Modern Urban Research, 2013, 28(3): 4-11. |
[王桂新, 潘泽瀚. 我国流动人口的空间分布及其影响因素: 基于第六次人口普查资料的分析. 现代城市研究, 2013, 28(3): 4-11.] | |
[43] | Liu Shenglong. Factors analysis of interprovincial migration in China. The Journal of Quantitative & Technical Economics, 2014, 31(4): 83-98. |
[刘生龙. 中国跨省人口迁移的影响因素分析. 数量经济技术经济研究, 2014, 31(4): 83-98.] | |
[44] | Liu Yanling, Feng Jian. Characteristics and impact factors of migration in China: Based on the analysis of the sixth census data. Human Geography, 2014, 29(2): 129-137. |
[刘晏伶, 冯健. 中国人口迁移特征及其影响因素: 基于第六次人口普查数据的分析. 人文地理, 2014, 29(2): 129-137.] | |
[45] | Zhang Yaojun, Cen Qiao. Spatial patterns of population mobility and determinants of inter-provincial migration in China. Population Research, 2014, 38(5): 54-71. |
[张耀军, 岑俏. 中国人口空间流动格局与省际流动影响因素研究. 人口研究, 2014, 38(5): 54-71.] | |
[46] |
Gu Hengyu, Liu Ziliang, Shen Tiyan, et al. Modelling interprovincial migration in China from 1995 to 2015 based on an eigenvector spatial filtering negative binomial model. Population,Space and Place, 2019, 25(8): e2253. DOI: 10.1002/psp.2253.
doi: 10.1002/psp.2253 |
[47] | Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS), Tabulation on the 2015 1% Population Sampling Survey of the People's Republic of China. Beijing: China Statistics Press, 2016. |
[国务院人口普查办公室, 国家统计局人口和就业统计司. 2015年全国人口1%人口抽样调查资料. 北京: 中国统计出版社, 2016.] | |
[48] | National Bureau of Statistics (NBS). China Statistical Yearbook (2011). Beijing: China Statistics Press, 2012. |
[国家统计局. 中国统计年鉴(2011). 北京: 中国统计出版社, 2012.] | |
[49] | Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS). Tabulation on the 2010 Population Census of the People's Republic of China. Beijing: China Statistics Press, 2012. |
[国务院人口普查办公室, 国家统计局人口和就业统计司. 中国2010年人口普查资料. 北京: 中国统计出版社, 2012.] | |
[50] | Transport Bureau of the Ministry of Railway (TBMR). China Railway Timetable 2010. Beijing: China Railway Publishing House, 2010. |
[铁道部运输局. 全国铁路旅客列车时刻表. 北京: 中国铁道出版社, 2010.] | |
[51] | Marshall A. Principles of Economics. Zhu Zhitai, Chen Liangbi, trans. Beijing: The Commercial Press, 2005. |
[马歇尔. 经济学原理. 朱志泰, 陈良璧, 译. 北京: 商务印书馆, 2005.] | |
[52] | LeSage J P. The theory and practice of spatial econometrics. Toledo: University of Toledo. 1999. |
[53] |
Shen J F. Explaining interregional migration changes in China, 1985-2000: Using a decomposition approach. Regional Studies, 2015, 49(7): 1176-1192.
doi: 10.1080/00343404.2013.812783 |
[54] |
Shen J F. Modelling interregional migration in China in 2005-2010: The roles of regional attributes and spatial interaction effects in modelling error. Population, Space and Place, 2017, 23(3): 1-14. DOI: 10.1002/psp.2014.
doi: 10.1002/psp.2014 |
[55] |
Fan C C. Modeling interprovincial migration in China, 1985-2000. Eurasian Geography and Economics, 2005, 46(3): 165-184.
doi: 10.2747/1538-7216.46.3.165 |
[56] |
Gennaioli N, La Porta R, Lopez-de-Silanes F, et al. Human capital and regional development. The Quarterly Journal of Economics, 2013, 128(1): 105-164.
doi: 10.1093/qje/qjs050 |
[57] |
Bauernschuster S, Falck O, Heblich S, et al. Why are educated and risk-loving persons more mobile across regions? Journal of Economic Behavior & Organization, 2014, 98: 56-69.
doi: 10.1016/j.jebo.2013.12.011 |
[58] | Faggian A, Modrego F, McCann P. Human capital and regional development//Capello R, Nijkamp P. (Eds.) Handbook of Regional Growth and Development Theories: Revised and Extended (2nd). Northampton: Edward Elgar Publishing Ltd, 2019: 149-171. |
[59] |
Sjaastad L A. The costs and returns of human migration. Journal of Political Economy, 1962, 70(5): 80-93.
doi: 10.1086/258726 |
[60] | Todaro M P. A model of labor migration and urban unemployment in less developed countries. The American Economic Review, 1969, 59(1): 138-148. |
[61] | Zou Xiangjiang, Wu Dan. Is Chinese migration population decreasing? An analysis based on 2015 1% population survey data. Jiangxi Social Sciences, 2017, 37(5): 235-244. |
[邹湘江, 吴丹. 我国流动人口减少了吗? 基于2015年1%人口抽样调查数据的分析. 江西社会科学, 2017, 37(5): 235-244.] | |
[62] |
Epstein G S. Herd and network effects in migration decision-making. Journal of Ethnic and Migration Studies, 2008, 34(4): 567-583.
doi: 10.1080/13691830801961597 |
[63] |
De Haas H. The internal dynamics of migration processes: A theoretical inquiry. Journal of Ethnic and Migration Studies, 2010, 36(10): 1587-1617.
doi: 10.1080/1369183X.2010.489361 |
[64] | Zhu Yu, Lin Liyue. Studies on the temporal processes of migration and their spatial effects in China: Progress and prospect. Scientia Geograhica Sinica, 2016, 36(6): 820-828. |
[朱宇, 林李月. 中国人口迁移流动的时间过程及其空间效应: 回顾与展望. 地理科学, 2016, 36(6): 820-828.] |
[1] | 蔡兴冉, 李忠勤, 张慧, 徐春海. 中国天山冰川变化脆弱性研究[J]. 地理学报, 2021, 76(9): 2253-2268. |
[2] | 宋昌耀, 李涛, 李国平. 地理距离对中国民营企业银行贷款的影响[J]. 地理学报, 2021, 76(8): 1835-1847. |
[3] | 赵梓渝, 王士君, 陈肖飞. 模块化生产下中国汽车产业集群空间组织重构——以一汽-大众为例[J]. 地理学报, 2021, 76(8): 1848-1864. |
[4] | 邓楚雄, 赵浩, 谢炳庚, 李忠武, 李科. 土地资源错配对中国城市工业绿色全要素生产率的影响[J]. 地理学报, 2021, 76(8): 1865-1881. |
[5] | 王哲, 郑法川. 中国近代城市体系的位序规模特征——基于1936年《中华民国邮政舆图》的分析[J]. 地理学报, 2021, 76(8): 1910-1923. |
[6] | 姜磊, 陈星宇, 朱竑. 中国城市养老院的空间分布特征及其分异成因[J]. 地理学报, 2021, 76(8): 1951-1964. |
[7] | 龚胜生, 李孜沫, 谢海超, 王晓伟, 张涛, 石国宁, 陈发虎. 中国3000年疫灾流行的时空特征及其影响因素[J]. 地理学报, 2021, 76(8): 1976-1996. |
[8] | 贺灿飞, 王文宇, 郭琪. 中国工业地理学的传承发展与转型[J]. 地理学报, 2021, 76(8): 1815-1834. |
[9] | 黄珏, 李正茂, 张珂, 江涛. 基于GEE的中国湖泊浮游植物生物量时空动态分析[J]. 地理学报, 2021, 76(7): 1693-1707. |
[10] | 周亮, 党雪薇, 周成虎, 王波, 魏伟. 中国建设用地的坡谱演化规律与爬坡影响[J]. 地理学报, 2021, 76(7): 1747-1762. |
[11] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[12] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[13] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[14] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[15] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |