地理学报 ›› 2021, Vol. 76 ›› Issue (11): 2830-2840.doi: 10.11821/dlxb202111016
收稿日期:
2020-06-29
修回日期:
2021-06-21
出版日期:
2021-11-25
发布日期:
2022-01-25
通讯作者:
李艺(1987-), 女, 湖南长沙人, 博士, 副教授, 主要从事海岸带景观生态学、空间分析模拟等。E-mail: yili@xmu.edu.cn作者简介:
金奇豪(1996-), 男, 浙江温州人, 硕士生, 研究方向为海岸带地区景观连接度模拟。E-mail: jinqihao@stu.xmu.edu.cn
基金资助:
JIN Qihao1(), WANG Qianmin1, LI Yi1,2(
), LI Yangfan1,2
Received:
2020-06-29
Revised:
2021-06-21
Published:
2021-11-25
Online:
2022-01-25
Supported by:
摘要:
人类社会发展进入人新世时期,以人类活动为主导的高频率干扰和自然资源的高强度开发对生态环境造成严重威胁,提升自然保护区的景观连接度是缓解和应对外界干扰的关键手段之一。传统意义上景观连接度研究侧重于景观基质对物种迁徙的累积负向阻碍作用,评价体系中忽略了生物多样性对物种迁徙的正向支持作用。本文以中国沿海省份作为研究区域,将生物多样性空间分布作为生态系统关键功能的表征,并将其纳入景观连接度评价体系,构建了生态廊道的连通适宜性及生态支持力二维评价新方法,进一步分析人类活动干扰和物种空间分布对自然保护区景观连接度的影响。研究结果表明沿海地区人类活动对景观连接度的影响存在明显的边缘效应,即自然保护区边缘地带的人类干扰范围(46.46%)明显高于其内部区域,人类活动干扰使保护区面积减少约720.25 km2,且造成廊道起点和终点位置的改变。自然保护区边缘地带人类干扰导致了研究区域内95条廊道的连通适宜性下降;78条廊道的生态支持力有明显提升,“一降一升”的评价结果能有效地衡量景观基质对物种迁移的支持能力变化。基于景观基质阻碍和促进作用的二维评价可为中国未来自然保护区连通性和生物多样性保护提供更为全面的时空格局动态变化模拟,为优化自然保护区空间布局提供更为完善的景观连接度评估新方法。
金奇豪, 汪倩旻, 李艺, 李杨帆. 中国沿海陆地自然保护区景观连接度评价[J]. 地理学报, 2021, 76(11): 2830-2840.
JIN Qihao, WANG Qianmin, LI Yi, LI Yangfan. Evaluation of landscape connectivity in China's coastal terrestrial nature reserves based on an improved minimum cumulative resistance model[J]. Acta Geographica Sinica, 2021, 76(11): 2830-2840.
[1] |
Steffen W, Broadgate W, Deutsch L, et al. The trajectory of the Anthropocene: The great acceleration. The Anthropocene Review, 2015, 2(1):81-98.
doi: 10.1177/2053019614564785 |
[2] |
McGuire J L, Lawler J J, McRae B H, et al. Achieving climate connectivity in a fragmented landscape. PNAS, 2016, 113(26):7195-7200.
doi: 10.1073/pnas.1602817113 pmid: 27298349 |
[3] |
Bai Limin, Feng Xinghua, Sun Ruifeng, et al. Spatial and temporal responses of habitat quality to urbanization: A case study of Changchun city, Jilin Province, China. Chinese Journal of Applied Ecology, 2020, 31(4):1267-1277.
doi: 10.13287/j.1001-9332.202004.012 pmid: 32530202 |
[白立敏, 冯兴华, 孙瑞丰, 等. 生境质量对城镇化的时空响应: 以长春市为例. 应用生态学报, 2020, 31(4):1267-1277.]
pmid: 32530202 |
|
[4] |
Liu Yansui, Li Jintao. The patterns and driving mechanisms of reclaimed land use in China's coastal areas in recent 30 years. Scientia Sinica: Terrae, 2020, 50(6):761-774.
doi: 10.1360/SSTe-2019-0266 |
[刘彦随, 李进涛. 近30年中国沿海围垦土地利用格局及其驱动机制. 中国科学: 地球科学, 2020, 50(6):761-774.] | |
[5] | Gu Chaolin, Guan Weihua, Liu Helin. China's Urbanization 2050: SD model and process simulation. Scientia Sinica (Terrae), 2017, 47(7):818-832. |
[顾朝林, 管卫华, 刘合林. 中国城镇化2050: SD模型与过程模拟. 中国科学: 地球科学, 2017, 47(7):818-832.] | |
[6] |
Geldmann J, Barnes M, Coad L, et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 2013, 161:230-238.
doi: 10.1016/j.biocon.2013.02.018 |
[7] |
Xu W H, Xiao Y, Zhang J J, et al. Strengthening protected areas for biodiversity and ecosystem services in China. PNAS, 2017, 114(7):1601-1606.
doi: 10.1073/pnas.1620503114 |
[8] |
Jones K R, Venter O, Fuller R A, et al. One-third of global protected land is under intense human pressure. Science, 2018, 360(6390):788-791.
doi: 10.1126/science.aap9565 |
[9] |
Peters M K, Hemp A, Appelhans T, et al. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568(7750):88-92.
doi: 10.1038/s41586-019-1048-z |
[10] |
Juffe-Bignoli D, Harrison I, Butchart S H, et al. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26:133-151.
doi: 10.1002/aqc.v26.S1 |
[11] | United Nations Economic and Social Council. Special Edition: Progress towards the Sustainable Development Goals. 2019. |
[12] |
Pringle R M. Upgrading protected areas to conserve wild biodiversity. Nature, 2017, 546(7656):91-99.
doi: 10.1038/nature22902 |
[13] |
Golden Kroner R E, Qin S Y, Cook C N, et al. The uncertain future of protected lands and waters. Science, 2019, 364(6443):881-886.
doi: 10.1126/science.aau5525 |
[14] |
Tesfaw A T, Pfaff A, Kroner R E G, et al. Land-use and land-cover change shape the sustainability and impacts of protected areas. PNAS, 2018, 115(9):2084-2089.
doi: 10.1073/pnas.1716462115 |
[15] | Cui Guofa. Special research fields and hot spots in science of nature reserves. Journal of Beijing Forestry University, 2004, 26(6):102-105. |
[崔国发. 自然保护区学当前应该解决的几个科学问题. 北京林业大学学报, 2004, 26(6):102-105.] | |
[16] | Chen Liding, Fu Bojie. The ecological significance of landscape connectivity. Chinese Journal of Ecology, 1996, 15(4):37-42, 73. |
[陈利顶, 傅伯杰. 景观连接度的生态学意义及其应用. 生态学杂志, 1996, 15(4):37-42, 73.] | |
[17] | Wu Jianguo. Landscape Ecology: Patterns, Process, Scales and Hierarchy. 2nd ed. Beijing: Higher Education Press, 2007. |
[邬建国. 景观生态学: 格局、过程、尺度与等级. 2版. 北京: 高等教育出版社, 2007.] | |
[18] |
Wu J G, Vankat J L, Barlas Y. Effects of patch connectivity and arrangement on animal metapopulation dynamics: A simulation study. Ecological Modelling, 1993, 65(3/4):221-254.
doi: 10.1016/0304-3800(93)90081-3 |
[19] | Zeng Hui, Chen Liding, Ding Shengyan. Landscape Ecology. Beijing: Higher Education Press, 2017. |
[曾辉, 陈利顶, 丁圣彦. 景观生态学. 北京: 高等教育出版社, 2017.] | |
[20] |
Leonard P B, Sutherland R W, Baldwin R F, et al. Landscape connectivity losses due to sea level rise and land use change. Animal Conservation, 2017, 20(1):80-90.
doi: 10.1111/acv.2017.20.issue-1 |
[21] |
Xu J Y, Fan F F, Liu Y X, et al. Construction of ecological security patterns in nature reserves based on ecosystem services and circuit theory: A case study in Wenchuan, China. International Journal of Environmental Research and Public Health, 2019, 16(17):3220. DOI: 10.3390/ijerph16173220.
doi: 10.3390/ijerph16173220 |
[22] |
Su K, Yu Q, Yue D P, et al. Simulation of a forest-grass ecological network in a typical desert oasis based on multiple scenes. Ecological Modelling, 2019, 413:108834. DOI: 10.1016/j.ecolmodel.2019.108834.
doi: 10.1016/j.ecolmodel.2019.108834 |
[23] |
Gao Y, Ma L, Liu J X, et al. Constructing ecological networks based on habitat quality assessment: A case study of Changzhou, China. Scientific Reports, 2017, 7:46073. DOI: 10.1038/srep46073.
doi: 10.1038/srep46073 pmid: 28393879 |
[24] |
Liu Xiaoman, Fu Zhuo, Wen Ruihong, et al. Characteristics of human activities and the spatio-temporal changes of national nature reserves in China. Geographical Research, 2020, 39(10):2391-2402.
doi: 10.11821/dlyj020200458 |
[刘晓曼, 付卓, 闻瑞红, 等. 中国国家级自然保护区人类活动及变化特征. 地理研究, 2020, 39(10):2391-2402.] | |
[25] | Peng Jian, Wang Yanglin, Liu Song, et al. Landscape ecological evaluation for sustainable coastal land use. Acta Geographica Sinica, 2003, 58(3):363-371. |
[彭建, 王仰麟, 刘松, 等. 海岸带土地持续利用景观生态评价. 地理学报, 2003, 58(3):363-371.] | |
[26] | Zhai Guojun, Huang Motao. The development of Chinese hydrographic surveying and charting. Hydrographic Surveying and Charting, 2009, 29(4):74-81. |
[翟国君, 黄谟涛. 我国海洋测绘发展历程. 海洋测绘, 2009, 29(4):74-81.] | |
[27] | Peng Jian, Wang Yanglin. A study on shoaly land in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 2000, 36(6):832-839. |
[彭建, 王仰麟. 我国沿海滩涂的研究. 北京大学学报(自然科学版), 2000, 36(6):832-839.] | |
[28] |
Li Y, Yin B C, Li Y F. Early warning signals for landscape connectivity and resilient conservation solutions. Land Degradation & Development, 2019, 30(1):73-83.
doi: 10.1002/ldr.v30.1 |
[29] |
Newbold T, Hudson L N, Hill S L L, et al. Global effects of land use on local terrestrial biodiversity. Nature, 2015, 520(7545):45-50.
doi: 10.1038/nature14324 |
[30] |
Joppa L N, O'Connor B, Visconti P, et al. Filling in biodiversity threat gaps. Science, 2016, 352(6284):416-418.
doi: 10.1126/science.aaf3565 pmid: 27102469 |
[31] |
Etter A, McAlpine C A, Seabrook L, et al. Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. Biological Conservation, 2011, 144(5):1585-1594.
doi: 10.1016/j.biocon.2011.02.004 |
[32] |
Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 1992, 23(1):1-16.
doi: 10.1016/0169-2046(92)90060-D |
[33] | Ministry of Ecology and Environment of the People's Republic of China. Regulations of the People's Republic of China on nature reserves 2005. http://www.gov.cn/ziliao/flfg/2005-09/27/content_70636.htm. |
[中华人民共和国生态环境部. 中华人民共和国自然保护区条例. 2005. http://www.gov.cn/ziliao/flfg/2005-09/27/content_70636.htm.] | |
[34] | Kavanagh D, Nuñez T, McRae B. Climate linkage mapper connectivity analysis software. The Nature Conservancy, Seattle WA, 2013. https://linkagemapper.org/. |
[35] | Ministry of Natural Resources of the People's Republic of China. Guidelines for Evaluating the Carrying Capacity of Resources and Environment and the Suitability of Land Space Development (Trial), 2020. http://www.gov.cn/zhengce/zhengceku/2020-01/22/content_5471523.htm. |
[中华人民共和国自然资源部. 资源环境承载能力与国土空间开发适宜性评价指南(试行), 2020. http://www.gov.cn/zhengce/zhengceku/2020-01/22/content_5471523.htm.] | |
[36] |
Nuñez T A, Lawler J J, Mcrae B H, et al. Connectivity planning to address climate change. Conservation Biology, 2013, 27(2):407-416.
doi: 10.1111/cobi.12014 |
[37] |
Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441(7093):629-632.
doi: 10.1038/nature04742 |
[38] | Huang Chao, Wei Hong, Wu Kejun, et al. The functional diversity of understory plants during the transformation from Pinus massoniana to Cinnamomum camphora forest. Acta Ecologica Sinica, 2020, 40(13):4573-4584. |
[黄超, 魏虹, 吴科君, 等. 马尾松林向香樟林改造林下植物功能多样性研究. 生态学报, 2020, 40(13):4573-4584.] | |
[39] | Xiang Zijun. Discussion on the existing problems and countermeasures in the management of nature reserves in China. South China Agriculture, 2019, 13(23):146-147. |
[向子军. 我国自然保护区管理中存在的问题及其对策探讨. 南方农业, 2019, 13(23):146-147.] | |
[40] | Chen Jining. Report of the State Council on the Construction and Management of Nature Reserves: Delivered at the 21st Session of the Standing Committee of the 12th National People's Congress on June 30, 2016 Gazette of the Standing Committee of the National People's Congress of the People's Republic of China, 2016. |
[陈吉宁. 国务院关于自然保护区建设和管理工作情况的报告: 2016年6月30日在第十二届全国人民代表大会常务委员会第二十一次会议上. 中华人民共和国全国人民代表大会常务委员会公报, 2016.] | |
[41] |
Spector S. Biogeographic crossroads as priority areas for biodiversity conservation. Conservation Biology, 2002, 16(6):1480-1487.
doi: 10.1046/j.1523-1739.2002.00573.x |
[42] |
Myers N. Threatened biotas: "Hot spots" in tropical forests. Environmentalist, 1988, 8(3):187-208.
pmid: 12322582 |
[43] |
Potts S G, Biesmeijer J C, Kremen C, et al. Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 2010, 25(6):345-353.
doi: 10.1016/j.tree.2010.01.007 |
[1] | 张涵, 黎夏, 石洪, 刘晓娟. 基于倾向得分匹配方法的中国自然保护区缓解人类活动压力评估[J]. 地理学报, 2021, 76(3): 680-693. |
[2] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[3] | 孙晶, 刘建国, 杨新军, 赵福强, 覃驭楚, 姚莹莹, 王放, 伦飞, 王洁晶, 秦波, 刘涛, 张丛林, 黄宝荣, 程叶青, 石金莲, 张劲松, 唐华俊, 杨鹏, 吴文斌. 人类世可持续发展背景下的远程耦合框架及其应用[J]. 地理学报, 2020, 75(11): 2408-2416. |
[4] | 彭建, 李慧蕾, 刘焱序, 胡熠娜, 杨旸. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 2018, 73(4): 701-710. |
[5] | 祝萍,黄麟,肖桐,王军邦. 中国典型自然保护区生境状况时空变化特征[J]. 地理学报, 2018, 73(1): 92-103. |
[6] | 黄麟, 郑瑜晗, 肖桐. 中国县域尺度生态保护的地域分异及其适宜性[J]. 地理学报, 2017, 72(7): 1305-1315. |
[7] | 张镱锂, 胡忠俊, 祁威, 吴雪, 摆万奇, 李兰晖, 丁明军, 刘林山, 王兆锋, 郑度. 基于NPP数据和样区对比法的青藏高原自然保护区保护成效分析[J]. 地理学报, 2015, 70(7): 1027-1040. |
[8] | 刘焱序, 王仰麟, 彭建, 魏海, 宋治清, 张小飞. 耦合恢复力的林区土地生态适宜性评价——以吉林省汪清县为例[J]. 地理学报, 2015, 70(3): 476-487. |
[9] | 赵国松, 刘纪远, 匡文慧, 欧阳志云. 1990-2010年中国土地利用变化对生物多样性保护重点区域的扰动[J]. 地理学报, 2014, 69(11): 1640-1650. |
[10] | 张春晓, 林珲, 陈旻. 虚拟地理环境中尺度适宜性问题的探讨[J]. 地理学报, 2014, 69(1): 100-109. |
[11] | 杨飞龄, 胡金明, 武瑞东. 基于NPWP的云南植物保护优先区分析[J]. 地理学报, 2013, 68(11): 1538-1548. |
[12] | 唐常春, 孙威. 长江流域国土空间开发适宜性综合评价[J]. 地理学报, 2012, 67(12): 1587-1598. |
[13] | 范泽孟, 张轩, 李婧, 岳天祥, 刘纪远, 孙晓芳, 香宝, 匡文慧. 国家级自然保护区土地覆盖类型转换趋势[J]. 地理学报, 2012, 67(12): 1623-1633. |
[14] | 何奇瑾, 周广胜. 我国夏玉米潜在种植分布区的气候适宜性研究[J]. 地理学报, 2011, 66(11): 1443-1450. |
[15] | 姚小英, 蒲金涌, 姚茹莘, 贾海源, 马杰. 气候暖干化背景下甘肃旱作区玉米气候适宜性变化[J]. 地理学报, 2011, 66(1): 59-67. |