地理学报 ›› 2021, Vol. 76 ›› Issue (11): 2765-2779.doi: 10.11821/dlxb202111012
岳书平1(), 闫业超1, 张树文2, 杨久春2, 王文娟3
收稿日期:
2020-07-14
修回日期:
2021-08-18
出版日期:
2021-11-25
发布日期:
2022-01-25
作者简介:
岳书平(1979-), 女, 山东德州人, 博士, 讲师, 主要从事GIS在土壤侵蚀中的应用及大数据分析与GIS应用研究。E-mail: yueshuping@nuist.edu.cn
基金资助:
YUE Shuping1(), YAN Yechao1, ZHANG Shuwen2, YANG Jiuchun2, WANG Wenjuan3
Received:
2020-07-14
Revised:
2021-08-18
Published:
2021-11-25
Online:
2022-01-25
Supported by:
摘要:
土壤冻融交替是陆地表层极其重要的物理过程,土壤冻融状态的频繁变化对地气能量交换、地表径流、植被生长、生态系统及土壤碳氮循环等均具有重要的影响。本文基于1981—2019年ERA5-LAND逐小时土壤温度数据,借助GIS空间分析功能,利用Python编程处理分析了中国东北地区近地表土壤冻融状态的时空变化特征。结果表明:从不同冻融状态起始日期的空间分布来看,近地表不同阶段的起始日期主要受纬度和地形的影响,具有明显的纬度地带性和垂直地带性。春季冻融过渡期和完全融化期的起始日期由东南向西北均呈逐渐推迟趋势,而秋季冻融过渡期与完全冻结期起始日期则由东南向西北随纬度升高越来越早。就不同冻融状态发生天数的空间分布而言,研究区南部春季冻融过渡期发生天数多于北部,西部多于东部,年均发生天数均在30 d以内;秋季发生冻融的天数空间差异不大,研究区一半以上的地区年均发生天数在10 d以内。完全融化期发生天数最多,从东南向西北呈逐渐减少趋势,年均发生天数主要介于150~240 d之间;完全冻结期发生天数则由南向北日益增多,其空间分布表现为一向南开口的簸箕形,各地年均发生天数集中于90~180 d之间。从时间变化趋势来看,近年来春季冻融过渡期起始日期以提前趋势为主,而秋季冻融过渡期起始日期总体表现为延后,致使完全融化期发生天数以增加趋势为主,年均变化速度高达0.2 d/a;大兴安岭以西、呼伦贝尔高原以北地区及辽河平原春季冻融过渡期发生天数呈减少趋势,其他地区为增加趋势;大兴安岭以西地区、呼伦贝尔高原以北地区完全融化期起始日期明显提前;松嫩平原和长白山区秋季冻融过渡期起始日期推迟显著,发生天数的变化趋势呈北增南减的空间分异特征;不同地区完全冻结期起始日期的变化趋势差异显著,中部广大的平原区呈不显著的推迟趋势,而大、小兴安岭、长白山、辽东半岛和辽西丘陵则提前进入完全冻结状态;研究区完全冻结期发生天数呈减少趋势,研究区中部的季节冻土区完全冻结期明显变短,年均减少速度大于0.2 d/a。
岳书平, 闫业超, 张树文, 杨久春, 王文娟. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779.
YUE Shuping, YAN Yechao, ZHANG Shuwen, YANG Jiuchun, WANG Wenjuan. Spatiotemporal variations of soil freeze-thaw state in Northeast China based on the ERA5-LAND dataset[J]. Acta Geographica Sinica, 2021, 76(11): 2765-2779.
[1] |
Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic health tundra mesocosms. Soil Biology and Biochemistry, 2004, 36(4):641-654.
doi: 10.1016/j.soilbio.2003.12.007 |
[2] |
Wang Lianfeng, Cai Yanjiang, Xie Hongtu. Relationships of soil physical and microbial properties with nitrous oxide emission under effects of freezing-thawing cycle. Chinese Journal of Applied Ecology, 2007, 18(10):2361-2366.
pmid: 18163324 |
[王连峰, 蔡延江, 解宏图. 冻融作用下土壤物理和微生物性状变化与氧化亚氮排放的关系. 应用生态学报, 2007, 18(10):2361-2366.]
pmid: 18163324 |
|
[3] | Li Ruiping, Shi Haibin, Takeo Akae, et al. Characteristics of air temperature and water-salt transfer during freezing and thawing period. Transactions of the CSAE, 2007, 23(4):70-74. |
[李瑞平, 史海滨, 赤江刚夫, 等. 冻融期气温与土壤水盐运移特征研究. 农业工程学报, 2007, 23(4):70-74.] | |
[4] |
Zhang T, Armstrong R L, Smith J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation. Journal of Geophysical Research: Atmospheres, 2003, 108(D22):8860. DOI: 10.1029/2003JD003530.
doi: 10.1029/2003JD003530 |
[5] | Chen Bo, Li Jianping. Characteristics of spatial and temporal variation of seasonal and short-term frozen soil in China in recent 50 years. Chinese Journal of Atmospheric Sciences, 2008, 32(3):432-443. |
[陈博, 李建平. 近50年来中国季节性冻土与短时冻土的时空变化特征. 大气科学, 2008, 32(3):432-443.] | |
[6] | Ma Wei, Wang Dayan. Studies on frozen soil mechanics in China in past 50 years and their prospect. Chinese Journal of Geotechnical Engineering, 2012, 34(4):625-640. |
[马巍, 王大雁. 中国冻土力学研究50a回顾与展望. 岩土工程学报, 2012, 34(4):625-640.] | |
[7] | Yang Meixue, Yao Tandong, Hirose N, et al. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chinese Science Bulletin, 2006, 51(16):1974-1976. |
[杨梅学, 姚檀栋, Hirose Nozomu, 等. 青藏高原表层土壤的日冻融循环. 科学通报, 2006, 51(16):1974-1976.] | |
[8] | Zimov S A, Schuur E A G, Chapin F S III. Permafrost and the global carbon budget. Nature, 2006, 312:1612-1613. |
[9] | Cheng G D, Wu T H. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research: Earth Surface, 2007, 112(F2):93-104. |
[10] | Zhang Lixin, Jiang Lingmei, Chai Linna, et al. Research advances in passive microwave remote sensing of freeze-thaw processes over complex landscapes. Advances in Earth Science, 2011, 26(10):1023-1029. |
[张立新, 蒋玲梅, 柴琳娜, 等. 地表冻融过程被动微波遥感机理研究进展. 地球科学进展, 2011, 26(10):1023-1029.] | |
[11] | Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Visible-thermal infrared and radar sensor. Advances in Earth Science, 2009, 24(9):963-972. |
[张廷军, 晋锐, 高峰. 冻土遥感研究进展: 可见光、红外及主动微波卫星遥感方法. 地球科学进展, 2009, 24(9):963-972.] | |
[12] |
Urakawa R, Shibata H, Kuroiwa M, et al. Effects of freeze thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese Archipelago. Soil Biology & Biochemistry, 2014, 74:82-94.
doi: 10.1016/j.soilbio.2014.02.022 |
[13] | Lin Li, Wang Qibing, Zhang Zhenhua, et al. Warming enhances soil freezing and thawing circles in the non-growing season in a Tibetan alpine grassland. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(1):171-178. |
[林笠, 王其兵, 张振华, 等. 温暖化加剧青藏高原高寒草甸土非生长季冻融循环. 北京大学学报(自然科学版), 2017, 53(1):171-178.] | |
[14] | Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin, 2000, 45(11):1205-1211. |
[赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程. 科学通报, 2000, 45(11):1205-1211.] | |
[15] | Hu Guojie, Zhao Lin, Li Ren, et al. Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions. Soils, 2014, 46(2):355-360. |
[胡国杰, 赵林, 李韧, 等. 青藏高原多年冻土区土壤冻融期间水热运移特征分析. 土壤, 2014, 46(2):355-360.] | |
[16] |
Wang K, Zhang T, Zhong X H, et al. Changes in the timing and duration of the near-surface soil freeze /thaw status from 1956 to 2006 across China. The Cryosphere, 2015, 9(3):1321-1331.
doi: 10.5194/tc-9-1321-2015 |
[17] |
Peng X Q, Frauenfeld O W, Cao B, et al. Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China. Journal of Geophysical Research Earth Surface, 2016, 121:1984-2000.
doi: 10.1002/2016JF003876 |
[18] | Yang Shuhua, Wu Tonghua, Li Ren, et al. Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau. Plateau Meteorology, 2018, 37(1):43-53. |
[杨淑华, 吴通华, 李韧, 等. 青藏高原近地表土壤冻融状况的时空变化特征. 高原气象, 2018, 37(1):43-53.] | |
[19] | Yang Shuhua, Li Ren, Wu Tonghua, et al. The variation characteristics of different freeze thaw status in the near surface and the relationship with temperature over the Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology, 2019, 41(6):1377-1387. |
[杨淑华, 李韧, 吴通华, 等. 青藏高原近地表土壤不同冻融状态的变化特征及其与气温的关系. 冰川冻土, 2019, 41(6):1377-1387.] | |
[20] | Shao Wanwan. Spatiotemporal variations of the near-surface soil freeze/thaw status in the northern hemisphere detected by using passive microwave remote sensing data[D]. Lanzhou: Lanzhou University, 2013. |
[邵婉婉. 基于被动微波遥感的北半球近地表土壤冻融时空分析[D]. 兰州: 兰州大学, 2013.] | |
[21] | Wang Chenghai, Shi Rui, Zuo Hongchao. Analysis on simulation of characteristic of land surface in western Qinghai-Tibet Plateau during frozen and thawing. Plateau Meteorology, 2008, 27(2):239-248. |
[王澄海, 师锐, 左洪超. 青藏高原西部冻融期陆面过程的模拟分析. 高原气象, 2008, 27(2):239-248.] | |
[22] | Luo Siqiong, Lü Shihua, Zhang Yu, et al. Simulation analysis on land surface process of BJ site of central Tibetan Plateau using CoLM. Plateau Meteorology, 2008, 27(2):259-271. |
[罗斯琼, 吕世华, 张宇, 等. CoLM模式对青藏高原中部BJ站陆面过程的数值模拟. 高原气象, 2008, 27(2):259-271.] | |
[23] |
Xia Kun, Luo Yong, Li Weiping. Simulation of freezing and melting of soil on the northeast Tibetan Plateau. Chinese Science Bulletin, 2011, 56(22):1828-1838.
doi: 10.1007/s11434-010-4271-4 |
[夏坤, 罗勇, 李伟平. 青藏高原东北部土壤冻融过程的数值模拟. 科学通报, 2011, 56(22):1828-1838.] | |
[24] |
Guo D L, Wang H J. Simulated change in the near surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010. Chinese Science Bulletin, 2014, 59(20):2439-2448.
doi: 10.1007/s11434-014-0347-x |
[25] | Liu Huolin, Hu Zeyong, Yang Yaoxian, et al. Simulation of the freezing-thawing processes at Nagqu area over Qinghai-Xizang Plateau. Plateau Meteorology, 2015, 34(3):676-683. |
[刘火霖, 胡泽勇, 杨耀先, 等. 青藏高原那曲地区冻融过程的数值模拟研究. 高原气象, 2015, 34(3):676-683.] | |
[26] | Wang Zhixia, Nan Zhuotong, Zhao Lin. The applicability of MODIS land surface temperature products to simulating the permafrost distribution over the Tibetan Plateau. Journal of Glaciology and Geocryology, 2011, 33(1):132-143. |
[王之夏, 南卓铜, 赵林. MODIS地表温度产品在青藏高原冻土模拟中的适用性评价. 冰川冻土, 2011, 33(1):132-143.] | |
[27] | Wang Baogang, Jin Rui, Zhao Zebin, et al. Recently research progresses in detecting surface soil freeze-thaw cycles with passive microwave remote sensing. Remote Sensing Technology and Application, 2018, 33(2):193-201. |
[王宝刚, 晋锐, 赵泽斌, 等. 被动微波遥感在地表冻融监测中的应用研究进展. 遥感技术与应用, 2018, 33(2):193-201.] | |
[28] |
Jin R, Zhang T J, Li X, et al. Mapping surface soil freeze thaw cycles in China based on SMMR and SSM/I brightness temperatures from 1978 to 2008. Arctic, Antarctic and Alpine Research, 2015, 47(2):213-229.
doi: 10.1657/AAAR00C-13-304 |
[29] | Zou Defu, Zhao Lin, Wu Tonghua, et al. Assessing the applicability of MODIS land surface temperature products in continuous permafrost regions in the central Tibetan Plateau. Journal of Glaciology and Geocryology, 2015, 37(2):308-317. |
[邹德富, 赵林, 吴通华, 等. MODIS地表温度产品在青藏高原连续多年冻土区的适用性分析. 冰川冻土, 2015, 37(2):308-317.] | |
[30] |
Zhao T J, Shi J C, Hu T X, et al. Estimation of high-resolution near surface freeze/thaw state by the integration of microwave and thermal infrared remote sensing data on the Tibetan Plateau. Earth and Space Science, 2017, 4:472-484.
doi: 10.1002/ess2.v4.8 |
[31] |
Luo D L, Jin H J, Marchenko S S, et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma, 2018, 312:74-85.
doi: 10.1016/j.geoderma.2017.09.037 |
[32] |
Hachem S, Duguay C R, Allard M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. The Cryosphere, 2012, 6(1):51-69.
doi: 10.5194/tc-6-51-2012 |
[33] | Meng Xiangui, Guo Junjian, Han Yongqing. Preliminarily assessment of ERA5 reanalysis data. Journal of Marine Meteorology, 2018, 38(1):91-99. |
[孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估. 海洋气象学报, 2018, 38(1):91-99.] | |
[34] |
Yang S H, Li R, Wu T H, et al. Evaluation of reanalysis soil temperature and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma, 2020, 377:114583. DOI: 10.1016/j.geoderma.2020.114583.
doi: 10.1016/j.geoderma.2020.114583 |
[35] |
Cao B, Gruber S, Zheng D H, et al. The ERA5-Land soil temperature bias in permafrost regions. The Cryosphere, 2020, 14(8):2581-2595.
doi: 10.5194/tc-14-2581-2020 |
[36] | Fu Changchao, Liu Jiping, Liu Zhiming. Spacial and temporal differentiation rule of the climate change in Northeast China in about 60 years. Journal of Arid Land Resources and Environment, 2009, 23(12):60-65. |
[付长超, 刘吉平, 刘志明. 近60年东北地区气候变化时空分异规律的研究. 干旱区资源与环境, 2009, 23(12):60-65.] | |
[37] |
He Wei, Bu Rencang, Xiong Zaiping, et al. Characteristics of temperature and precipitation in northeastern China from 1961 to 2005. Acta Ecologica Sinica, 2013, 33(2):519-531.
doi: 10.5846/stxb |
[贺伟, 布仁仓, 熊在平, 等. 1961—2005年东北地区气温和降水变化趋势. 生态学报, 2013, 33(2):519-531.] | |
[38] | Sun Fenghua, Li Liguang, Zhang Yaocun. Key zone, key period and key factor influencing climate in Northeast China. Scientia Geographica Sinica, 2011, 31(8):911-916. |
[孙凤华, 李丽光, 张耀存. 影响中国东北地区气候的关键区、关键时段和关键因子. 地理科学, 2011, 31(8):911-916.] | |
[39] | Liu Dandan, Liang Feng, Wang Wanzhao, et al. Spatial and temporal variations of precipitation in Northeast China from 1901 to 2010 based on GPCC data. Research of Soil and Water Conservation, 2017, 24(2):124-131. |
[刘丹丹, 梁丰, 王婉昭, 等. 基于GPCC数据的1901—2010年东北地区降水时空变化. 水土保持研究, 2017, 24(2):124-131.] | |
[40] | Copernicus Climate Change Service(C3S). C3S ERA5-Land reanalysis. Copernicus Climate Change Service, date of access. https://cds.climate.copernicus.eu/cdsapp#!/home, 2019. |
[41] | ECMWF. ERA5-Land: data documentation. https://confluence.ecmwf.int/display/CKB/ERA5-Land%3A+data+documentation. Webpage last modified on Jun 12, 2020. |
[42] | Shan Shuai, Shen Runping, Shi Chunxiang, et al. Evaluation of land surface temperature and 2 m air temperature from five reanalyses datasets across North China inWinter. Plateau Meteorology, 2020, 39(1):37-47. |
[单帅, 沈润平, 师春香 . 等. 中国北部积雪区冬季地表温度和2m气温再分析数据评估. 高原气象, 2020, 39(1):37-47.] | |
[43] |
Anandhi A, Perumal S, Gowda P H, et al. Long-term spatial and temporal trends in frost indices in Kansas, USA. Climatic Change, 2013, 120(1):169-181.
doi: 10.1007/s10584-013-0794-4 |
[44] |
Li X, Jin R, Pan X D, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation, 2012, 17:33-42.
doi: 10.1016/j.jag.2011.12.002 |
[45] |
Jin R, Li X, Che T. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sensing of Environment, 2009, 113(12):2651-2660.
doi: 10.1016/j.rse.2009.08.003 |
[46] |
Wang Y, Liu H, Chung H, et al. Non-growing season soil respiration is controlled by freezing and thawing processes in the summer monsoon-dominated Tibetan alpine grassland. Global Biogeochemistry Cycles, 2014, 28(10):1081-1095.
doi: 10.1002/2013GB004760 |
[47] | Jiao Yongliang, Li Ren, Zhao Lin, et al. Processes of soil thawing freezing and features of soil moisture migration in the permafrost active layer. Journal of Glaciology and Geocryology, 2014, 36(2):237-247. |
[焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征. 冰川冻土, 2014, 36(2):237-247.] | |
[48] | Xie Yanmei, Jin Rui, Yang Xingguo. Algorithm development of monitoring daily near surface freeze/thaw cycles using AMSR-E brightness temperatures. Remote Sensing Technology and Application, 2013, 28(2):182-191. |
[谢燕梅, 晋锐, 杨兴国. AMSR-E亮温监测中国近地表冻融循环算法研究. 遥感技术与应用, 2013, 28(2):182-191.] | |
[49] |
Hamed K H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 2008, 349:350-363.
doi: 10.1016/j.jhydrol.2007.11.009 |
[50] | Tian Haifeng, Qin Yaochen, Li Guodong, et al. Multi-time scales analysis of temperature variation based on wavelet and M-K methods in Yudong during 1951 to 2011. Chinese Agricultural Science Bulletin, 2013, 29(35):329-338. |
[田海峰, 秦耀辰, 李国栋, 等. 基于小波和M-K的豫东农区近60年气温变化的多时间尺度分析. 中国农学通报, 2013, 29(35):329-338.] | |
[51] | Lu Wenxiu, Liu Bingjun, Chen Junfan, et al. Variation trend of precipitation in the Pearl River Basin in recent 50 years. Journal of Natural Resources, 2014, 29(1):80-90. |
[陆文秀, 刘丙军, 陈俊凡, 等. 近50a来珠江流域降水变化趋势分析. 自然资源学报, 2014, 29(1):80-90.] | |
[52] | Zhang Tianfeng, Wang Weitai, Jiang Huifeng, et al. Characteristics of abnormal warm winter climate events on Longdong Loess Plateau in Gansu. Chinese Agricultural Science Bulletin, 2019, 35(12):81-88. |
[张天峰, 王位泰, 姜惠峰, 等. 甘肃陇东黄土高原暖冬异常气候事件特征分析. 中国农学通报, 2019, 35(12):81-88.] | |
[53] |
Yue S, Pilon P, Cavadias G. Power of the Mann-Kendall and Spearman's rho test for detecting monotonic trends in hydrological series. Journal of Hydrology, 2002, 259:254-271.
doi: 10.1016/S0022-1694(01)00594-7 |
[54] | Chao Hua, Wang Dang, Gong Qiang, et al. Temporal and spatial variation characteristics of frozen soil in Northeast China. Modern Agricultural Science and Technology, 2019(18) :144-147, 153. |
[晁华, 王当, 龚强, 等. 东北地区冻土的时空变化特征. 现代农业科技, 2019(18) :144-147, 153.] | |
[55] | Liu Xiu. Effects of climate change on permafrost and hydrological processes in northeast China[D]. Xiangtan: Hunan University of Science and Technology, 2019. |
[刘秀. 气候变化对东北冻土及水文过程的影响[D]. 湘潭: 湖南科技大学, 2019.] | |
[56] | Li Ji, Jiao Min, Hu Chunli, et al. Characteristics of summer temperature and its impact factors in Northeast China from 1951 to 2012. Journal of Meteorology and Environment, 2016, 32(5):74-83. |
[李辑, 焦敏, 胡春丽, 等. 1951—2012年东北地区夏季气温及其影响因子变化特征. 气象与环境学报, 2016, 32(5):74-83.] | |
[57] | Qiao Xuemei, Liu Puxing. The temporal and spatial characteristics and genesis of cold wave in northern China. Journal of Glaciology and Geocryology, 2020, 42(2):357-367. |
[乔雪梅, 刘普幸. 中国北方地区寒潮时空特征及其成因分析. 冰川冻土, 2020, 42(2):357-367.] | |
[58] | Lin Changwei, Zhu Yanli, Chang Xiaoli. Study on the changing trend of temperature in the four seasons of northeast China. Territory & Natural Resources Study, 2018(4):68-72. |
[林长伟, 朱艳丽, 常晓丽. 东北地区四季气温变化趋势研究. 国土与自然资源研究, 2018(4):68-72.] | |
[59] | Xu Di, Ren Baohua, Zheng Jianqiu, et al. Analysis of trend pattern and seesaw pattern of winter temperature in Northeast China. Journal of the Meteorological Sciences, 2017, 37(1):127-133. |
[徐迪, 任保华, 郑建秋, 等. 中国东北地区冬季气温趋势及反相模态分析. 气象科学, 2017, 37(1):127-133.] | |
[60] |
Jin H J, Yu Q H, Lv L, et al. Degradation of permafrost in the Xing'anling Mountains, northeastern China. Permafrost and Periglacial Processes, 2007, 18(3):245-258.
doi: 10.1002/(ISSN)1099-1530 |
[61] | Zhao Boyu. The change trend and influence factor analysis of frozen soil in Heilongjiang Province[D]. Harbin: Harbin Normal University, 2018. |
[赵博宇. 黑龙江省冻土地温变化趋势及影响因子分析研究[D]. 哈尔滨: 哈尔滨师范大学, 2018.] | |
[62] | Li Qian. Permafrost change characteristics and atmospheric circulation background analysis in Changchun City from 1962 to 2011. Meteorology of Jilin, 2012, 19(4):17-21. |
[李倩. 1962—2011年长春市冻土变化特征及其大气环流背景分析. 吉林气象, 2012, 19(4):17-21.] | |
[63] | Chao Hua, Xu Hong, Wang Dang, et al. Characteristics of spatial and temporal variation of frozen soil in Liaoning Province in recent 50 years. Meteorological Science and Technology, 2017, 45(1):115-120. |
[晁华, 徐红, 王当, 等. 近50a来辽宁省冻土的时空变化特征. 气象科技, 2017, 45(1):115-120.] | |
[64] | Ren Xizhen. Study on the effect of snow melt on the soil water content and temperature[D]. Hohhot: Inner Mongolia Agriculture University, 2010. |
[任喜珍. 积雪消融对土壤水热状况的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2010.] | |
[65] | He Ruixia, Jin Huijun, Lv Lanzhi, et al. Recent changes of permafrost and cold regions environments in the northern part of Northeastern China. Journal of Glaciology and Geocryology, 2009, 31(3):525-531. |
[何瑞霞, 金会军, 吕兰芝, 等. 东北北部冻土退化与寒区生态环境变化. 冰川冻土, 2009, 31(3):525-531.] | |
[66] | He Ruixia, Jin Huijun, Chang Xiaoli, et al. Degradation of permafrost in the northern part of northeastern China: Present state and causal analysis. Journal of Glaciology and Geocryology, 2009, 31(5):829-834. |
[何瑞霞, 金会军, 常晓丽, 等. 东北北部多年冻土的退化现状及原因分析. 冰川冻土, 2009, 31(5):829-834.] | |
[67] | Cao Wei, Sheng Yu, Wu Jichun, et al. Review and outlook on hill-slope hydrological process affected by permafrost degradation. Journal of China Hydrology, 2020, 40(2):1-6. |
[曹伟, 盛煜, 吴吉春, 等. 冻土退化影响下坡面水文过程研究进展及趋势展望. 水文, 2020, 40(2):1-6.] | |
[68] | Ye Renzheng, Chang Juan. Study of ground water in permafrost regions of China: Status and process. Journal of Glaciology and Geocryology, 2019, 41(1):183-196. |
[叶仁政, 常娟. 中国冻土地下水研究现状与进展综述. 冰川冻土, 2019, 41(1):183-196.] | |
[69] | Sun Baoyang. Li Zhanbin, Xiao Junbo, et al. Research progress on the effects of freeze-thaw on soil physical and chemical properties and wind and water erosion. Chinese Journal of Applied Ecology, 2019, 30(1):337-347. |
[孙宝洋, 李占斌, 肖俊波, 等. 冻融作用对土壤理化性质及风水蚀影响研究进展. 应用生态学报, 2019, 30(1):337-347.] | |
[70] |
Cheng Y T, Li P, Xu G C, et al. The effect of soil water content and erodibility on losses of available nitrogen and phosphorus in simulated freeze-thaw conditions. CATENA, 2018, 166:21-33.
doi: 10.1016/j.catena.2018.03.015 |
[1] | 邓楚雄, 赵浩, 谢炳庚, 李忠武, 李科. 土地资源错配对中国城市工业绿色全要素生产率的影响[J]. 地理学报, 2021, 76(8): 1865-1881. |
[2] | 高吉喜, 刘晓曼, 王超, 王勇, 付卓, 侯鹏, 吕娜. 中国重要生态空间生态用地变化与保护成效评估[J]. 地理学报, 2021, 76(7): 1708-1721. |
[3] | 刘诗奇, 王平, 王田野, 黄其威, 于静洁. 西伯利亚北极河流有机碳输出特征及影响要素[J]. 地理学报, 2021, 76(5): 1065-1077. |
[4] | 刘侦海, 王绍强, 陈斌. 2000—2015年中蒙俄经济走廊东段冻土时空变化及植被响应[J]. 地理学报, 2021, 76(5): 1231-1244. |
[5] | 孙宏日, 刘艳军, 周国磊. 东北地区交通优势度演变格局及影响机制[J]. 地理学报, 2021, 76(2): 444-458. |
[6] | 蔡佩汝, 汪侠, 闫艺涵, 张颖. 中国儿童多维贫困时空格局变化及其影响因素[J]. 地理学报, 2021, 76(10): 2551-2567. |
[7] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[8] | 马春玥, 买买提·沙吾提, 姚杰, 古丽努尔·依沙克. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710. |
[9] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[10] | 吴祥文, 臧淑英, 马大龙, 任建华, 李昊, 赵光影. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331. |
[11] | 宋小青, 申雅静, 王雄, 李心怡. 耕地利用转型中的生物灾害脆弱性研究[J]. 地理学报, 2020, 75(11): 2362-2379. |
[12] | 房艳刚, 刘建志. 东北地区县域粮劳变化耦合模式与乡村发展类型[J]. 地理学报, 2020, 75(10): 2241-2255. |
[13] | 阮宏威,于静洁. 1992-2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7): 1292-1304. |
[14] | 吴宜进,赵行双,奚悦,刘慧,李畅. 基于MODIS的2006-2016年西藏生态质量综合评价及其时空变化[J]. 地理学报, 2019, 74(7): 1438-1449. |
[15] | 程维明,高晓雨,马廷,徐新良,陈印军,周成虎. 基于地貌分区的1990-2015年中国耕地时空特征变化分析[J]. 地理学报, 2018, 73(9): 1613-1629. |