地理学报 ›› 2021, Vol. 76 ›› Issue (11): 2697-2709.doi: 10.11821/dlxb202111008
胡胜1,2,3(), 邱海军1,2,3(
), 王宁练1,2,3, 崔一飞4, 曹明明1, 王家鼎3,5, 王新刚3,5
收稿日期:
2020-06-22
修回日期:
2021-04-27
出版日期:
2021-11-25
发布日期:
2022-01-25
通讯作者:
邱海军(1983-), 男, 陕西神木人, 博士, 教授, 主要从事山地灾害研究。E-mail: haijunqiu@nwu.edu.cn作者简介:
胡胜(1988-), 男, 湖北枣阳人, 博士后, 中国地理学会会员(S110014073M), 主要从事黄土地质灾害研究。E-mail: shenghu@nwu.edu.cn
基金资助:
HU Sheng1,2,3(), QIU Haijun1,2,3(
), WANG Ninglian1,2,3, CUI Yifei4, CAO Mingming1, WANG Jiading3,5, WANG Xingang3,5
Received:
2020-06-22
Revised:
2021-04-27
Published:
2021-11-25
Online:
2022-01-25
Supported by:
摘要:
高分辨率地形与影像数据的缺乏已成为研究地表现象、特征与过程的重要瓶颈。低成本无人机设备和摄影测量技术的发展,打开了地学领域获取高分辨率数据的大门,大大提高了地质灾害野外调查与灾害编目的精度与效率。本文通过无人机野外调查和遥感室内目视解译,构建了一个包含307个黄土滑坡属性的数据库。在此基础上,通过数字地形分析和数理统计等方法,总结归纳了黄土滑坡样本数据的分布规律,探讨了地形对黄土滑坡分布的影响,阐述了地形相对高差对最长滑动距离、滑坡周长、滑坡面积的影响,提出了基于传统经验公式拟合的滑坡规模快速预测公式。结果表明:① 滑坡规模—频率分布具有明显的规律性,不同最大长度、最大宽度和周长的黄土滑坡数量分布均呈现正偏态分布,而不同面积的滑坡数量分布则服从幂函数分布;② 地形对黄土滑坡发育控制作用明显,不同地形高差、平均坡度、坡形的斜坡单元滑坡发育数量差异较大;③ 地形相对高差与滑坡的最长滑距、周长和面积的拟合曲线很好地符合幂律分布规律,但不同地形区的拟合效果有所差异,黄土丘陵区拟合效果最好,黄土高原全区次之,黄土台塬区最差;④ 本文建立的黄土滑坡规模快速预测模型,为黄土滑坡灾害调查提供了经验公式支撑。
胡胜, 邱海军, 王宁练, 崔一飞, 曹明明, 王家鼎, 王新刚. 地形对黄土高原滑坡的影响[J]. 地理学报, 2021, 76(11): 2697-2709.
HU Sheng, QIU Haijun, WANG Ninglian, CUI Yifei, CAO Mingming, WANG Jiading, WANG Xingang. The influence of terrain on loess landslides in Loess Plateau[J]. Acta Geographica Sinica, 2021, 76(11): 2697-2709.
[1] | Peng Jianbing, Wang Qiyao, Men Yuming, et al. Landslide Hazard of Loess Plateau. Beijing: Science Press, 2019. |
[彭建兵, 王启耀, 门玉明, 等. 黄土高原滑坡灾害. 北京: 科学出版社, 2019.] | |
[2] | Wang Yongyan. Loess and Quaternary Geology. Xi'an: Shaanxi People's Publishing House, 1982. |
[王永焱. 黄土与第四纪地质. 西安: 陕西人民出版社, 1982.] | |
[3] | Liu T S. Loess and the Environment. Beijing: China Ocean Press, 1985. |
[4] | Ministry of Water Resources, Chinese Academy of Sciences, Chinese Academy of Engineering. Soil Erosion Control and Ecological Security in China (Volume of Northwest Loess Plateau). Beijing: Science Press, 2010. |
[水利部, 中国科学院, 中国工程院. 中国水土流失防治与生态安全(西北黄土高原区卷). 北京: 科学出版社, 2010.] | |
[5] |
Qiu H J, Regmi A D, Cui P, et al. Size distribution of loess slides in relation to local slope height within different slope morphologies. CATENA, 2016, 145:155-163.
doi: 10.1016/j.catena.2016.06.005 |
[6] |
Zhuang J Q, Peng J B, Wang G H, et al. Distribution and characteristics of landslide in Loess Plateau: A case study in Shaanxi province. Engineering Geology, 2018, 236:89-96.
doi: 10.1016/j.enggeo.2017.03.001 |
[7] |
Peng J B, Wang S K, Wang Q Y, et al. Distribution and genetic types of loess landslides in China. Journal of Asian Earth Sciences, 2019, 170:329-350.
doi: 10.1016/j.jseaes.2018.11.015 |
[8] | Zhang Maosheng, Li Tonglu. Triggering factors and forming mechanism of loess landslides. Journal of Engineering Geology, 2011, 19(4):530-540. |
[张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究. 工程地质学报, 2011, 19(4):530-540.] | |
[9] |
Zhuang J Q, Peng J B. A coupled slope cutting-a prolonged rainfall-induced loess landslide: A 17 October 2011 case study. Bulletin of Engineering Geology and the Environment, 2014, 73(4):997-1011.
doi: 10.1007/s10064-014-0645-1 |
[10] |
Cui Y F, Nouri A, Chan D, et al. A new approach to DEM simulation of sand production. Journal of Petroleum Science and Engineering, 2016, 147:56-67.
doi: 10.1016/j.petrol.2016.05.007 |
[11] |
Tarolli P. High-resolution topography for understanding earth surface processes: Opportunities and challenges. Geomorphology, 2014, 216:295-312.
doi: 10.1016/j.geomorph.2014.03.008 |
[12] |
Niethammer U, James M R, Rothmund S, et al. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 2012, 128:2-11.
doi: 10.1016/j.enggeo.2011.03.012 |
[13] |
Casagli N, Cigna F, Bianchini S, et al. Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment, 2016, 4:92-108.
doi: 10.1016/j.rsase.2016.07.001 |
[14] |
Shafique M, Meijde M V D, Khan M A. A review of the 2005 Kashmir earthquake-induced landslides: From a remote sensing prospective. Journal of Asian Earth Sciences, 2016, 118:68-80.
doi: 10.1016/j.jseaes.2016.01.002 |
[15] |
Dąbski M, Zmarz A, Pabjanek P, et al. UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology, 2017, 290:29-38.
doi: 10.1016/j.geomorph.2017.03.033 |
[16] | Hu Sheng, Qiu Haijun, Wang Xingang, et al. Extracting characteristic parameters of loess landslides based on high-resolution topography and its application prospect. Quaternary Sciences, 2018, 38(2):367-379. |
[胡胜, 邱海军, 王新刚, 等. 基于高分辨地形的黄土滑坡特征参数提取及其应用意义. 第四纪研究, 2018, 38(2):367-379.] | |
[17] |
Bayer B, Simoni A, Schmidt D, et al. Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Engineering Geology, 2017, 226:20-32.
doi: 10.1016/j.enggeo.2017.03.026 |
[18] |
Liu P, Li Z H, Hoey T, et al. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. International Journal of Applied Earth Observation and Geoinformation, 2013, 21:253-264.
doi: 10.1016/j.jag.2011.10.010 |
[19] |
Wang C, Zhang H, Wu F, et al. Disaster phenomena of Wenchuan earthquake in high resolution airborne synthetic aperture radar images. Journal of Applied Remote Sensing, 2009, 3(1):031690. DOI: 10.1117/1.3154558.
doi: 10.1117/1.3154558 |
[20] |
Razak K A, Santangelo M, van Westen C J, et al. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment. Geomorphology, 2013, 190:112-125.
doi: 10.1016/j.geomorph.2013.02.021 |
[21] | Tang Guoan, Na Jiaming Cheng Weiming. Progress of digital terrain analysis on regional geomorphology in China. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1570-1591. |
[汤国安, 那嘉明, 程维明. 我国区域地貌数字地形分析研究进展. 测绘学报, 2017, 46(10):1570-1591.] | |
[22] | Hu Sheng. Spatial pattern of landslide in Loess Plateau and its influence on geomorphologic evolution[D]. Xi'an: Northwest University, 2019. |
[胡胜. 黄土高原滑坡空间格局及其对地貌演化的影响[D]. 西安: 西北大学, 2019.] | |
[23] | Selby M J. Hillslope Materials and Processes. Oxford: Oxford University Press, 1993. |
[24] |
Crozier M J. Landslide geomorphology: An argument for recognition, with examples from New Zealand. Geomorphology, 2010, 120(1-2):3-15.
doi: 10.1016/j.geomorph.2009.09.010 |
[25] |
Migoń P, Jancewicz K, Różycka M, et al. Large-scale slope remodelling by landslides: Geomorphic diversity and geological controls, Kamienne Mts., Central Europe. Geomorphology, 2017, 289:134-151.
doi: 10.1016/j.geomorph.2016.09.037 |
[26] |
Hu S, Qiu H J, Wang X G, et al. Acquiring high-resolution topography and performing spatial analysis of loess landslides by using low-cost UAVs. Landslides, 2018, 15(3):593-612.
doi: 10.1007/s10346-017-0922-8 |
[27] |
Hu S, Qiu H J, Wang N L, et al. The influence of loess cave development upon landslides and geomorphologic evolution: A case study from the northwest Loess Plateau, China. Geomorphology, 2020, 359:107167. DOI: 10.1016/j.geomorph.2020.107167.
doi: 10.1016/j.geomorph.2020.107167 |
[28] | Lei Xiangyi. The Cause of Formation, Prenevtion and Therapy of Geological Disasters of Loess. Beijing: Peking University Press, 2014. |
[雷祥义. 黄土地质灾害的形成机理与防治对策. 北京: 北京大学出版社, 2014.] | |
[29] |
Hu Sheng, Qiu Haijun, Wang Ninglian, et al. High-resolution image based landslides dataset in Loess Plateau. Global Change Data Repository, 2020. DOI: 10.3974/geodb.2020.04.08.V1.
doi: 10.3974/geodb.2020.04.08.V1 |
[胡胜, 邱海军, 王宁练, 等. 基于高分辨率影像和地形解译的黄土高原滑坡数据库. 全球变化数据仓储, 2020. DOI: 10.3974/geodb.2020.04.08.V1.]
doi: 10.3974/geodb.2020.04.08.V1 |
|
[30] | Tang Guoan, Li Fayuan, Yang Xin, et al. Exploration and Practice of Digital Terrain Analysis of Loess Plateau. Beijing: Science Press, 2015. |
[汤国安, 李发源, 杨昕, 等. 黄土高原数字地形分析探索与实践. 北京: 科学出版社, 2015.] | |
[31] | Zhou Qiming, Liu Xuejun. Digital Terrain Analysis. Beijing: Science Press, 2006. |
[周启鸣, 刘学军. 数字地形分析. 北京: 科学出版社, 2006.] | |
[32] | Qiao Jianping, Wu Caiyan. The influence of ralative elevation on landslide occurrence within Yunyang-Wushan section in the Three Gorges Reservoir region. The Chinese Journal of Geological Hazard and Control, 2005, 16(4):16-19. |
[乔建平, 吴彩燕. 三峡水库区云阳—巫山段斜坡高差因素对滑坡发育的贡献率研究. 中国地质灾害与防治学报, 2005, 16(4):16-19.] | |
[33] | Xiong Haixian, Huang Guangqing, Gong Qinghua, et al. A review on application of digital terrain analysis in landslide researches. Tropical Geography, 2015, 35(1):139-146. |
[熊海仙, 黄光庆, 宫清华, 等. 数字地形分析在滑坡研究中的应用综述. 热带地理, 2015, 35(1):139-146.] | |
[34] | Qiao Jianping. Structure and shape of landslide. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9):1355-1358. |
[乔建平. 滑坡体结构与坡形. 岩石力学与工程学报, 2002, 21(9):1355-1358.] | |
[35] | Malamud B D. Tails of natural hazards. Physics World, 2004, 17(8):25-29. |
[36] |
Qiu H J, Cui Y F, Hu S, et al. Size distribution and size of loess slides in response to slope height and slope gradient based on field survey data. Geomatics, Natural Hazards and Risk, 2019, 10(1):1443-1458.
doi: 10.1080/19475705.2019.1584590 |
[37] |
Gutiérrez F, Fabregat I, Roqué C, et al. Sinkholes and caves related to evaporite dissolution in a stratigraphically and structurally complex setting, Fluvia Valley, eastern Spanish Pyrenees: Geological, geomorphological and environmental implications. Geomorphology, 2016, 267:76-97.
doi: 10.1016/j.geomorph.2016.05.018 |
[38] |
Kagan Y Y. Earthquake size distribution: Power-law with exponent β≡1/2? Tectonophysics, 2010, 490(1/2):103-114.
doi: 10.1016/j.tecto.2010.04.034 |
[39] |
Nishimura T, Iguchi M, Hendrasto M, et al. Magnitude-frequency distribution of volcanic explosion earthquakes. Earth Planets and Space, 2016, 68(1):125. DOI: 10.1186/s40623-016-0505-2.
doi: 10.1186/s40623-016-0505-2 |
[40] | Qiu Haijun, Cui Peng, Hu Sheng, et al. Size-frequency distribution of landslides in different landforms on the Loess Plateau of northern Shaanxi. Earth Science, 2016, 41(2):343-350. |
[邱海军, 崔鹏, 胡胜, 等. 陕北黄土高原不同地貌类型区黄土滑坡频率分布. 地球科学, 2016, 41(2):343-350.] | |
[41] | Qiu Haijun, Cui Peng, Cao Mingming, et al. Distribution of frequency-size of geological disaster base on principle of maximum entropy in Loess Plateau. Rock and Soil Mechanics, 2014, 35(12):3541-3549, 3555. |
[邱海军, 崔鹏, 曹明明, 等. 基于最大熵原理的黄土丘陵区地质灾害规模频率分布研究. 岩土力学, 2014, 35(12):3541-3549, 3555.] | |
[42] |
Qiu Haijun, Cao Mingming, Wang Yanlin, et al. Power law correlations of geohazards in loess hilly region. Scientia Geographica Sinica, 2015, 35(1):107-113.
doi: 10.13249/j.cnki.sgs.2015.01.107 |
[邱海军, 曹明明, 王雁林, 等. 黄土丘陵区地质灾害规模参数幂律相依性研究. 地理科学, 2015, 35(1):107-113.] | |
[43] | Xiao Yang. Analysis of relationship of topography and topographic evolution with landslides based on GIS[D]. Changsha: Central South University, 2014. |
[肖阳. 基于GIS的滑坡与地形及其演化关系的研究[D]. 长沙: 中南大学, 2014.] | |
[44] |
Medwedeff W G, Clark M K, Zekkos D, et al. Characteristic landslide distributions: An investigation of landscape controls on landslide size. Earth and Planetary Science Letters, 2020, 539:116203. DOI: 10.1016/j.epsl.2020.116203.
doi: 10.1016/j.epsl.2020.116203 |
[45] |
Regmi N R, Walter J I. Detailed mapping of shallow landslides in Eastern Oklahoma and Western Arkansas and potential triggering by Oklahoma earthquakes. Geomorphology, 2020, 366:106806. DOI: 10.1016/j.geomorph.2019.05.026.
doi: 10.1016/j.geomorph.2019.05.026 |
[1] | 李文君, 李鹏, 封志明, 游珍, 肖池伟. 基于人居环境特征的青藏高原“无人区”空间界定[J]. 地理学报, 2021, 76(9): 2118-2129. |
[2] | 张俊华, 朱连奇, 李国栋, 赵芳, 秦静婷. 中国南北过渡带土壤碳氮空间特征及暖温带与亚热带界限[J]. 地理学报, 2021, 76(9): 2269-2282. |
[3] | 熊礼阳, 汤国安, 杨昕, 李发源. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 2021, 76(3): 595-611. |
[4] | 赵雪雁, 马平易, 李文青, 杜昱璇. 黄土高原生态系统服务供需关系的时空变化[J]. 地理学报, 2021, 76(11): 2780-2796. |
[5] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[6] | 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. |
[7] | 鲁大铭, 杨新军, 石育中, 王子侨. 黄土高原乡村体制转换与转型发展[J]. 地理学报, 2020, 75(2): 348-364. |
[8] | 徐勇, 赵燊, 樊杰. 中国城市规划建设用地标准及气候和地形地貌修订[J]. 地理学报, 2020, 75(1): 194-208. |
[9] | 刘晓燕, 刘昌明, 党素珍. 黄土丘陵区雨强对水流含沙量的影响[J]. 地理学报, 2019, 74(9): 1723-1732. |
[10] | 曾岁康,雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318. |
[11] | 隆院男,闫世雄,蒋昌波,吴长山,李志威,唐蓉. 基于多源遥感影像的洞庭湖地形提取方法[J]. 地理学报, 2019, 74(7): 1467-1481. |
[12] | 王琛智,张朝,张静,陶福禄,陈一,丁浒. 湖南省地形因素对水稻生产的影响[J]. 地理学报, 2018, 73(9): 1792-1808. |
[13] | 张静静, 朱文博, 朱连奇, 崔耀平, 何莎莎, 任涵. 基于栅格的豫西山区地形起伏特征及其对人口和经济的影响[J]. 地理学报, 2018, 73(6): 1093-1106. |
[14] | 张翰超,宁晓刚,王浩,邵振峰. 基于高分辨率遥感影像的2000-2015年中国省会城市高精度扩张监测与分析[J]. 地理学报, 2018, 73(12): 2345-2363. |
[15] | 文琦,施琳娜,马彩虹,王永生. 黄土高原村域多维贫困空间异质性研究——以宁夏彭阳县为例[J]. 地理学报, 2018, 73(10): 1850-1864. |