地理学报 ›› 2021, Vol. 76 ›› Issue (11): 2647-2659.doi: 10.11821/dlxb202111004
收稿日期:
2020-08-28
修回日期:
2021-03-10
出版日期:
2021-11-25
发布日期:
2022-01-25
通讯作者:
刘巧(1980-), 男, 湖北随州人, 博士, 研究员, 主要从事冰川学研究。E-mail: liuqiao@imde.ac.cn作者简介:
廖海军(1993-), 男, 重庆彭水人, 硕士, 主要从事冰川与冰川变化研究。E-mail: liaohaijun@imde.ac.cn
基金资助:
LIAO Haijun1,2(), LIU Qiao1(
), ZHONG Yan1,2, LU Xuyang1
Received:
2020-08-28
Revised:
2021-03-10
Published:
2021-11-25
Online:
2022-01-25
Supported by:
摘要:
表碛覆盖型冰川是中国西部较为常见的冰川类型。表碛层存在于大气—冰川冰界面,强烈影响大气圈与冰冻圈之间的热交换。表碛厚度的空间异质性可极大地改变冰川的消融率和物质平衡过程,进而影响冰川径流过程和下游水资源。基于Landsat TM/TIRS数据,运用能量平衡方程反演了贡嘎山地区冰川表碛厚度,研究了贡嘎山地区冰川在1990—2019年间表碛覆盖范围及厚度变化情况,同时对比了东西坡差异。结果表明:① 贡嘎山地区冰川表碛扩张总面积达43.824 km2。其中,海螺沟冰川扩张2.606 km2、磨子沟冰川1.959 km2、燕子沟冰川1.243 km2、大贡巴冰川0.896 km2、小贡巴冰川0.509 km2、南门关沟冰川2.264 km2,年均扩张率分别为3.2%、11.1%、1.5%、0.9%、1.0%和6.5%;② 海螺沟冰川、磨子沟冰川、燕子沟冰川、大贡巴冰川、小贡巴冰川、南门关沟冰川表碛平均增厚分别为5.2 cm、3.1 cm、3.7 cm、6.8 cm、7.3 cm和13.1 cm;③ 西坡冰川表碛覆盖度高,表碛覆盖年均扩张率低,冰川末端退缩量小;东坡冰川表碛覆盖年均扩张率高,但表碛覆盖度总体低于西坡,冰川末端退缩量大。
廖海军, 刘巧, 钟妍, 鲁旭阳. 1990—2019年贡嘎山地区典型冰川表碛覆盖变化及其空间差异[J]. 地理学报, 2021, 76(11): 2647-2659.
LIAO Haijun, LIU Qiao, ZHONG Yan, LU Xuyang. Supraglacial debris-cover change and its spatial heterogeneity in the Mount Gongga, 1990-2019[J]. Acta Geographica Sinica, 2021, 76(11): 2647-2659.
[1] |
Deng Haijun, Chen Yaning. The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia. Acta Geographica Sinica, 2018, 73(7):1309-1323.
doi: 10.11821/dlxb201807010 |
[邓海军, 陈亚宁. 中亚天山山区冰雪变化及其对区域水资源的影响. 地理学报, 2018, 73(7):1309-1323.] | |
[2] |
Paul F, Kääb A, Haeberli W. Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Global and Planetary Change, 2007, 56(1/2):111-122.
doi: 10.1016/j.gloplacha.2006.07.007 |
[3] |
Bhambri R, Bolch T, Chaujar R K, et al. Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 2011, 57(203):543-556.
doi: 10.3189/002214311796905604 |
[4] |
Tampucci D, Azzoni R S, Boracchi P, et al. Debris-covered glaciers as habitat for plant and arthropod species: Environmental framework and colonization patterns. Ecological Complexity, 2017, 32:42-52.
doi: 10.1016/j.ecocom.2017.09.004 |
[5] |
Nicholson L, Benn D I. Calculating ice melt beneath a debris layer using meteorological data. Journal of Glaciology, 2006, 52(178):463-470.
doi: 10.3189/172756506781828584 |
[6] | Zhang Yong, Liu Shiyin. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China. Acta Geographica Sinica, 2017, 72(9):1606-1620. |
[张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展. 地理学报, 2017, 72(9):1606-1620.] | |
[7] |
Juen M, Mayer C, Lambrecht A, et al. Impact of varying debris cover thickness on ablation: A case study for Koxkar Glacier in the Tien Shan. The Cryosphere, 2014, 8(2):377-386.
doi: 10.5194/tc-8-377-2014 |
[8] |
Collier E, Maussion F, Nicholson L I, et al. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram. The Cryosphere, 2015, 9(4):1617-1632.
doi: 10.5194/tc-9-1617-2015 |
[9] | Chand M B, Kayastha R B, Parajuli A, et al. Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal. Proceedings of the International Association of Hydrological Sciences, 2015, 368:21-26. |
[10] |
Rounce D R, McKinney D C. Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model. The Cryosphere, 2014, 8(4):1317-1329.
doi: 10.5194/tc-8-1317-2014 |
[11] |
Jiang S, Nie Y, Liu Q, et al. Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong river basin, Central Himalayas, between 1988 and 2015. Remote Sensing, 2018, 10:986. DOI: 10.3390/rs10070986.
doi: 10.3390/rs10070986 |
[12] |
Nicholson L, Benn D I. Properties of natural supraglacial debris in relation to modelling sub-debris ice ablation. Earth Surface Processes and Landforms, 2013, 38(5):490-501.
doi: 10.1002/esp.v38.5 |
[13] |
Patel L K, Sharma P, Thamban M, et al. Debris control on glacier thinning: A case study of the Batal glacier, Chandra basin, Western Himalaya. Arabian Journal of Geosciences, 2016, 9:309. DOI: 10.1007/s12517-016-2362-5.
doi: 10.1007/s12517-016-2362-5 |
[14] |
Schauwecker S, Rohrer M, Huggel C, et al. Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. Journal of Glaciology, 2017, 61(228):675-688.
doi: 10.3189/2015JoG14J102 |
[15] |
Zhang Y, Fujita K, Liu S Y, et al. Distribution of debris thickness and its effect on ice melt at Hailuogou glacier, southeastern Tibetan Plateau, using in situ surveys and ASTER imagery. Journal of Glaciology, 2011, 57(206):1147-1157.
doi: 10.3189/002214311798843331 |
[16] |
Mihalcea C, Mayer C, Diolaiuti G, et al. Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan. Annals of Glaciology, 2008, 48:49-57.
doi: 10.3189/172756408784700680 |
[17] |
Mihalcea C, Brock B W, Diolaiuti G, et al. Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Regions Science and Technology, 2008, 52(3):341-354.
doi: 10.1016/j.coldregions.2007.03.004 |
[18] |
Huang L, Li Z, Tian B S, et al. Estimation of supraglacial debris thickness using a novel target decomposition on L-band polarimetric SAR images in the Tianshan Mountains. Journal of Geophysical Research Earth Surface, 2017, 122(4):925-940.
doi: 10.1002/2016JF004102 |
[19] |
Liu Q, Liu S Y, Zhang Y, et al. Recent shrinkage and hydrological response of Hailuogou glacier, a monsoon temperate glacier on the east slope of Mount Gongga, China. Journal of Glaciology, 2010, 56(196):215-224.
doi: 10.3189/002214310791968520 |
[20] | Wang X. Advances in observation and studies on Gongga Station of Alpine Ecosystem in recent 20 years. Journal of Mountain Science, 2006, 24(5):612-619. |
[21] | Su Zhen, Orlov A B. The preliminary report on the Sino-USSR joint glaciological expedition to Gongga Shan. Journal of Glaciology and Geocryology, 1991, 13(2):181-184. |
[苏珍, 奥尔洛夫A B. 中苏联合贡嘎山冰川1990年考察简况. 冰川冻土, 1991, 13(2):181-184.] | |
[22] | Liu Qiao, Zhang Yong. Studies on the dynamics of monsoonal temperate glaciers in Mt. Gongga: A review. Mountain Research, 2017, 35(5):717-726. |
[刘巧, 张勇. 贡嘎山海洋型冰川监测与研究: 历史、现状与展望. 山地学报, 2017, 35(5):717-726.] | |
[23] |
Zhang Y, Hirabayashi Y, Fujita K, et al. Heterogeneity in supraglacial debris thickness and its role in glacier mass changes of the Mount Gongga. Science China Earth Sciences, 2016, 59(1):170-184.
doi: 10.1007/s11430-015-5118-2 |
[24] |
Scherler D, Wulf H, Gorelick N. Global assessment of supraglacial debris-cover extents. Geophysical Research Letters, 2018, 45(21):11798-11805.
doi: 10.1029/2018GL080158 |
[25] |
Foster L A, Brock B W, Cutler M E J, et al. A physically based method for estimating supraglacial debris thickness from thermal band remote-sensing data. Journal of Glaciology, 2012, 58(210):677-691.
doi: 10.3189/2012JoG11J194 |
[26] |
Qin Zhihao, Zhang M H, Karniel A, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. Acta Geographica Sinica, 2001, 56(4):456-466.
doi: 10.11821/xb200104009 |
[覃志豪, Zhang Minghua, Karniel A, 等. 用陆地卫星TM6数据演算地表温度的单窗算法. 地理学报, 2001, 56(4):456-466.] | |
[27] |
Liao H, Liu Q, Zhong Y, et al. Landsat-based estimation of the glacier surface temperature of Hailuogou glacier, southeastern Tibetan Plateau, between 1990 and 2018. Remote Sensing, 2020, 12(13):2105.
doi: 10.3390/rs12132105 |
[28] | Wang Yuyu, Yao Jimin, Han Haidong, et al. Analysis of aerodynamic roughness of the debris-covered Keqicar glacier. Plateau Meteorology, 2014, 33(3):762-768. |
[王玉玉, 姚济敏, 韩海东, 等. 科其喀尔冰川表碛区空气动力学粗糙度分析. 高原气象, 2014, 33(3):762-768.] | |
[29] | Ye Jing. Liu Huizhi, Li Wanbiao, et al. Estimation of the net radiation over arid and semiarid areas only using MODIS data for clear sky days. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(6):942-950. |
[叶晶, 刘辉志, 李万彪, 等. 利用MODIS数据直接估算晴空区干旱与半干旱地表净辐射通量. 北京大学学报(自然科学版), 2010, 46(6):942-950.] | |
[30] |
Brutsaert W. On a derivable formula for long-wave radiation from clear skies. Water Resources Research, 1975, 11(5):742-744.
doi: 10.1029/WR011i005p00742 |
[31] |
Ebrahimi S, Marshall S J. Parameterization of incoming longwave radiation at glacier sites in the Canadian Rocky Mountains. Journal of Geophysical Research Atmospheres, 2015, 120, 12536-12556.
doi: 10.1002/2015JD023324 |
[32] | Guo Peng, Wu Fadong. Estimating instantaneous solar radiation and daytime net radiation with Landsat8 data on clear-sky days in arid areas. Arid Land Geography, 2018, 41(1):32-37. |
[郭鹏, 武法东. 利用Landsat8数据估算干旱区晴天太阳瞬时和日间净辐射. 干旱区地理, 2018, 41(1):32-37.] | |
[33] |
Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees celsius on Asia's glaciers. Nature, 2017, 549(7671):257-260.
doi: 10.1038/nature23878 |
[34] | Nicholson L I, McCarthy M, Pritchard H D, et al. Supraglacial debris thickness variability: Impact on ablation and relation to terrain properties. The Cryosphere Discussions, 2018, 12(12):3719-3734. |
[35] | Zhang Guoliang, Pan Baotian, Wang Jie, et al. Research on the glacier change in the Gongga Mountain based on remote-sensing and GPS from 1966 to 2008. Journal of Glaciology and Geocryology, 2010, 32(3):454-460. |
[张国梁, 潘保田, 王杰, 等. 基于遥感和GPS的贡嘎山地区1966—2008年现代冰川变化研究. 冰川冻土, 2010, 32(3):454-460.] |
[1] | 蔡兴冉, 李忠勤, 张慧, 徐春海. 中国天山冰川变化脆弱性研究[J]. 地理学报, 2021, 76(9): 2253-2268. |
[2] | 刘娟,姚晓军,刘时银,郭万钦,许君利. 1970-2016年冈底斯山冰川变化[J]. 地理学报, 2019, 74(7): 1333-1344. |
[3] | 邢武成, 李忠勤, 张慧, 张明军, 梁鹏斌, 牟建新. 1959年来中国天山冰川资源时空变化[J]. 地理学报, 2017, 72(9): 1594-1605. |
[4] | 张勇, 刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报, 2017, 72(9): 1606-1620. |
[5] | 杜建括, 何元庆, 李双, 王世金, 牛贺文. 横断山区典型海洋型冰川物质平衡研究[J]. 地理学报, 2015, 70(9): 1415-1422. |
[6] | 王璞玉, 李忠勤, 李慧林, 吴利华, 金爽, 周平. 近50 年来天山地区典型冰川厚度及储量变化[J]. 地理学报, 2012, 67(7): 929-940. |
[7] | 王圣杰, 张明军, 李忠勤, 王飞腾, 李慧林, 李亚举, 黄小燕. 近50年来中国天山冰川面积变化对气候的响应[J]. 地理学报, 2011, 66(1): 38-46. |
[8] | 聂勇; 张镱锂; 刘林山; 张继平. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J]. 地理学报, 2010, 65(1): 13-28. |
[9] | 李宗省,何元庆,王世金,贾文雄,和献中,张宁宁,朱国锋,蒲焘,杜建扩,辛惠娟. 1900-2007 年横断山区部分海洋型冰川变化[J]. 地理学报, 2009, 64(11): 1319-1330. |
[10] | 刘时银, 丁永建, 张勇, 上官冬辉, 李晶, 韩海东, 王建, 谢昌卫. 塔里木河流域冰川变化及其对水资源影响[J]. 地理学报, 2006, 61(5): 482-490. |
[11] | 庞洪喜, 何元庆, 卢爱刚, 赵井东, 宁宝英, 院玲玲, 宋波, 张宁宁. 玉龙雪山冰川稳定同位素分馏冬夏对比[J]. 地理学报, 2006, 61(5): 501-509. |
[12] | 王琳,欧阳华,周才平,张锋,白军红,彭奎. 贡嘎山东坡土壤有机质及氮素分布特征[J]. 地理学报, 2004, 59(6): 1012-1019. |
[13] | 何元庆,张忠林,姚檀栋,陈拓,庞洪喜,章典. 中国季风温冰川区近代气候变化与冰川动态[J]. 地理学报, 2003, 58(4): 550-558. |
[14] | 程根伟,罗辑. 贡嘎山亚高山林地碳的积累与耗散特征[J]. 地理学报, 2003, 58(2): 179-185. |
[15] | 李震, 孙文新, 曾群柱. 综合RS与GIS方法提取青藏高原冰川变化信息——以布喀塔格峰为例[J]. 地理学报, 1999, 54(3): 263-268. |