地理学报 ›› 2021, Vol. 76 ›› Issue (9): 2312-2328.doi: 10.11821/dlxb202109019
收稿日期:
2020-10-22
修回日期:
2021-05-20
出版日期:
2021-09-25
发布日期:
2021-11-25
通讯作者:
宫兆宁(1976-), 女, 山东青岛人, 博士, 教授, 研究方向为湿地生态遥感。E-mail: gongzhn@163.com作者简介:
牟奎南(1996-), 女, 山东烟台人, 硕士生, 研究方向为遥感技术与地学应用。E-mail: moukuinan@163.com
基金资助:
MOU Kuinan1,2(), GONG Zhaoning1,2(
), QIU Huachang1,2
Received:
2020-10-22
Revised:
2021-05-20
Published:
2021-09-25
Online:
2021-11-25
Supported by:
摘要:
潮沟是陆海生态系统交互作用的主要通道,具有高度的时空动态性。以黄河三角洲新旧河道为界,划分黄河北岸(Ⅰ区)、南岸东(Ⅱ区)、南岸西(Ⅲ区)为对比研究区,选择1998—2018年5个关键时间节点的遥感影像为数据源,利用GIS空间分析功能,定量表征了潮沟发育程度的典型形态特征参数,剖析了黄河改道、湿地恢复工程和外来物种入侵等因子对潮沟发育过程的影响,挖掘潮沟网络的时空演变规律。结果表明:① 潮沟的形态特征具有明显的时空异质性。从1998年黄河改道初期至2004年湿地恢复初期,Ⅰ区各等级潮沟数量大幅减少;由于潮滩淤进和互花米草固滩作用,Ⅱ区潮沟数量、密度、分汊率呈现增长趋势,在2013年互花米草的快速扩张期,潮沟曲率、分汊率明显增大;Ⅲ区潮沟发育的等级、长度、密度最大,等级间的转化频率最高,湿地恢复工程导致低等级潮沟数量、长度明显减少,较强的海洋动力抑制了潮沟曲流的发育。② 黄河改道和侧弯丁坝建设导致平均归槽长度(OPL)增大,潮沟网络的排水效率减少。互花米草的快速扩张使排水效率增大,OPL不断降低;潮沟发育程度Ⅲ区>Ⅱ区>Ⅰ区。③ 潮沟系统由快速变化青年期整体进入缓慢变化中年期,发育状态趋于动态平衡。研究成果有助于了解大范围潮沟的发育过程及演变机制,为沿岸潮滩开发与利用提供科学的决策支撑。
牟奎南, 宫兆宁, 邱华昌. 黄河三角洲潮沟网络形态特征的时空分异规律及其发育过程[J]. 地理学报, 2021, 76(9): 2312-2328.
MOU Kuinan, GONG Zhaoning, QIU Huachang. Spatiotemporal differentiation and development process of tidal creek network morphological characteristics in Yellow River Delta[J]. Acta Geographica Sinica, 2021, 76(9): 2312-2328.
[1] | Lyu Tingyu, Gong Zheng, Zhang Changkuan, et al. Reviews of morphological characteristics and evolution processes of silty mud tidal creeks. Journal of Hohai University (Natural Sciences), 2016, 44(2): 178-188. |
[吕亭豫, 龚政, 张长宽, 等. 粉砂淤泥质潮滩潮沟形态特征及发育演变过程研究现状. 河海大学学报(自然科学版), 2016, 44(2): 178-188.] | |
[2] |
Naiman R J, Decamps H, Pollock M. The role of riparian corridors in maintaining regional biodiversity. Ecological Applications: A Publication of the Ecological Society of America, 1993, 3(2): 209-212.
doi: 10.2307/1941822 |
[3] |
Li Chunchu. On the estuarine system and its automatic adjustment. Acta Geographica Sinica, 1997, 52(4): 353-360.
doi: 10.11821/xb199704009 |
[李春初. 论河口体系及其自动调整作用: 以华南河流为例. 地理学报, 1997, 52(4): 353-360.] | |
[4] | Marani M, Lanzoni S, Zandolin D, et al. Tidal meanders. Water Resources Research, 2002, 38(11): 1-7. |
[5] | Novakowski K I, Torres R, Gardner L R, et al. Geomorphic analysis of tidal creek networks. Water Resources Research, 2004, 40(5): 5401-5413. |
[6] |
Marani M, Belluco E, D'Alpaos A, et al. On the drainage density of tidal networks. Water Resources Research, 2003, 39(2): 1040. DOI: 10.1029/2001wr001051.
doi: 10.1029/2001wr001051 |
[7] |
Williams P B, Orr M K, Garrity N J. Hydraulic geometry: A geomorphic design tool for tidal marsh channel evolution in wetland restoration projects. Restoration Ecology, 2002, 10(3): 577-590.
doi: 10.1046/j.1526-100X.2002.t01-1-02035.x |
[8] | Chen Caijun. Change in tide creek after mudflat being enclosed in the middle coast in Jiangsu province. Marine Science Bulletin, 2001, 20(6): 71-79. |
[陈才俊. 江苏中部海堤大规模外迁后的潮水沟发育. 海洋通报, 2001, 20(6): 71-79.] | |
[9] | Shen Yongming, Zhang Renshun, Wang Yanhong. The tidal creek character in salt marsh of Spartina alterniflora Loisel on strong tide coast. Geographical Research, 2003, 22(4): 520-527. |
[沈永明, 张忍顺, 王艳红. 互花米草盐沼潮沟地貌特征. 地理研究, 2003, 22(4): 520-527.] | |
[10] | Wu Deli, Shen Yongming, Fang Renjian. A morphological analysis of tidal creek network patterns on the central Jiangsu coast. Acta Geographica Sinica, 2013, 68(7): 955-965. |
[吴德力, 沈永明, 方仁建. 江苏中部海岸潮沟的形态变化特征. 地理学报, 2013, 68(7): 955-965.] | |
[11] |
Zhao B X, Liu Y X, Xu W X, et al. Morphological characteristics of tidal creeks in the central coastal region of Jiangsu, China, using LiDAR. Remote Sensing, 2019, 11(20): 2426. DOI: 10.3390/rs11202426.
doi: 10.3390/rs11202426 |
[12] | Gong Zheng, Zhang Yansong, Zhao Kun, et al. Advances in coastal storm impacts on morphological evolution of mud tidal flat-creek system. Advances in Science and Technology of Water Resources, 2019, 39(4): 75-84. |
[龚政, 张岩松, 赵堃, 等. 风暴作用下淤泥质潮滩—潮沟系统地貌演变研究进展. 水利水电科技进展, 2019, 39(4): 75-84.] | |
[13] | Li Jialin, Yang Xiaoping, Tong Yiqin. Progress on environmental effects of tidal flat reclamation. Progress in Geography, 2007, 26(2): 43-51. |
[李加林, 杨晓平, 童亿勤. 潮滩围垦对海岸环境的影响研究进展. 地理科学进展, 2007, 26(2): 43-51.] | |
[14] |
Gong Z N, Zhang C, Zhang L, et al. Assessing spatiotemporal characteristics of native and invasive species with multitemporal remote sensing images in the Yellow River Delta, China. Land Degradation & Development, 2020, 32(3): 1338-1352.
doi: 10.1002/ldr.v32.3 |
[15] | Zhang Lei, Gong Zhaoning, Wang Qiwei, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. Journal of Remote Sensing, 2019, 23(2): 313-326. |
[张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取. 遥感学报, 2019, 23(2): 313-326.] | |
[16] | Vandenbruwaene W, Meire P, Temmerman S. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology, 2012, 151- 152: 114-125. |
[17] |
Kearney W S, Fagherazzi S. Salt marsh vegetation promotes efficient tidal channel networks. Nature Communications, 2016, 7: 12287. DOI: 10.1038/ncomms12287.
doi: 10.1038/ncomms12287 |
[18] |
Zhou Z, Stefanon L, Olabarrieta M, et al. Analysis of the drainage density of experimental and modelled tidal networks. Earth Surface Dynamics, 2014, 2(1): 105-116.
doi: 10.5194/esurf-2-105-2014 |
[19] |
Vandenbruwaene W, Bouma T J, Meire P, et al. Bio-geomorphic effects on tidal channel evolution: Impact of vegetation establishment and tidal prism change. Earth Surface Processes and Landforms, 2013, 38(2): 122-132.
doi: 10.1002/esp.v38.2 |
[20] | Steel T J, Pye K. The development of salt marsh tidal creek networks: Evidence from the UK. Proceedings of the Canadian Coastal Conference, 1997, 1: 267-280. |
[21] | Yan Shouguang. The growth and evolution of tidal creeks on the prograding mud flat in Jiangsu province[D]. Nanjing: Nanjing Normal University, 2002. |
[燕守广. 江苏淤长型淤泥质潮滩上潮沟的发育与演变[D]. 南京: 南京师范大学, 2002.] | |
[22] |
Stefanon L, Carniello L, D'Alpaos A, et al. Experimental analysis of tidal network growth and development. Continental Shelf Research, 2009, 30(8): 950-962.
doi: 10.1016/j.csr.2009.08.018 |
[23] |
Vlaswinkel B M, Cantelli A. Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surface Processes and Landforms, 2011, 36(6): 739-752.
doi: 10.1002/esp.2099 |
[24] |
Chirol C, Haigh I D, Pontee N, et al. Parametrizing tidal creek morphology in mature saltmarshes using semi-automated extraction from lidar. Remote Sensing of Environment, 2018, 209: 291-311.
doi: 10.1016/j.rse.2017.11.012 |
[25] | Liu Hongyu, Lv Xianguo, Liu Zhenqian. Deltaic wetlands in Bohai Sea: Resources and development. Journal of Natural Resources, 2001, 16(2): 101-106. |
[刘红玉, 吕宪国, 刘振乾. 环渤海三角洲湿地资源研究. 自然资源学报, 2001, 16(2): 101-106.] | |
[26] | Peng Jun, Chen Shenliang. The variation process of water and sediment and its effect on the Yellow River Delta over the six decades. Acta Geographica Sinica, 2009, 64(11): 1353-1362. |
[彭俊, 陈沈良. 近60年黄河水沙变化过程及其对三角洲的影响. 地理学报, 2009, 64(11): 1353-1362.] | |
[27] |
Wang Qiwei, Gong Zhaoning, Guan Hongliang, et al. Extracting method of tidal creek features under heterogeneous background at Yellow River Delta using remotely sensed imagery. Chinese Journal of Applied Ecology, 2019, 30(9): 3097-3107.
doi: 10.13287/j.1001-9332.201909.019 pmid: 31529885 |
[王启为, 宫兆宁, 关鸿亮, 等. 异质背景下黄河三角洲潮沟的遥感提取方法. 应用生态学报, 2019, 30(9): 3097-3107.]
pmid: 31529885 |
|
[28] |
Gong Z N, Wang Q W, Guan H L, et al. Extracting tidal creek features in a heterogeneous background using Sentinel-2 imagery: A case study in the Yellow River Delta, China. International Journal of Remote Sensing, 2020, 41(10): 3653-3676.
doi: 10.1080/01431161.2019.1707898 |
[29] |
Wang Qing, Luo Meng, Qiu Dongdong, et al. Effect of hydrological characteristics on the recruitment of Suaeda salsa in coastal salt marshes. Journal of Natural Resources, 2019, 34(12): 2569-2579.
doi: 10.31497/zrzyxb.20191207 |
[王青, 骆梦, 邱冬冬, 等. 滨海盐沼水文特征对盐地碱蓬定植过程的影响. 自然资源学报, 2019, 34(12): 2569-2579.] | |
[30] |
Fan Y B, Zhou D M, Ke Y H, et al. Quantifying the correlated spatial distributions between tidal creeks and coastal wetland vegetation in the Yellow River Estuary. Wetlands, 2020, 40: 2701-2711.
doi: 10.1007/s13157-020-01292-7 |
[31] | Shan Kai. Theory, methodology and practices of wetland ecological restoration in Yellow River Delta Nature Reserve. Wetland Science and Management, 2007, 3(4): 16-20. |
[单凯. 黄河三角洲自然保护区湿地生态恢复的原理、方法与实践. 湿地科学与管理, 2007, 3(4): 16-20.] | |
[32] | Wu Yanan, Wang Yu, Zhang Zhenming. Effects of tidal creek morphology on succession of wetland plant communities in the Yellow River Delta. Ecological Science, 2020, 39(1): 33-41. |
[武亚楠, 王宇, 张振明. 黄河三角洲潮沟形态特征对湿地植物群落演替的影响. 生态科学, 2020, 39(1): 33-41.] | |
[33] |
Ichoku C, Chorowicz J. A numerical approach to the analysis and classification of channel network patterns. Water Resources Research, 1994, 30(2): 161-174.
doi: 10.1029/93WR02279 |
[34] | Horton R E, Htrata T. Erosional development of streams and their drainage basins, hydrophyrical approach to quantitative morphology. Journal of the Japanese Forest Society, 1955, 37(6): 257-262. |
[35] |
Lohani B, Mason D C, Scott T R, et al. Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry. International Journal of Remote Sensing, 2006, 27(1): 5-25.
doi: 10.1080/01431160500206692 |
[36] |
Mest S C, Crown D A, Harbert W. Watershed modeling in the Tyrrhena Terra region of Mars. Journal of Geophysical Research: Planets, 2010, 115(E9): E09001. DOI: 10.1029/2009JE003429.
doi: 10.1029/2009JE003429 |
[37] | Yu Xiaojuan, Zhang Zhongsheng, Xue Zhenshan, et al. Morphological characteristics and connectivity of tidal channels in the Yellow River Delta for 7 periods since 1989. Wetland Science, 2018, 16(4): 517-523. |
[于小娟, 张仲胜, 薛振山, 等. 1989年以来7个时期黄河三角洲潮沟的形态特征及连通性研究. 湿地科学, 2018, 16(4): 517-523.] | |
[38] | Huang Haijun, Fan Hui. Change detection of tidal flats and tidal creeks in the Yellow River Delta using Landsat TM/ETM+ images. Acta Geographica Sinica, 2004, 59(5): 723-730. |
[黄海军, 樊辉. 黄河三角洲潮滩潮沟近期变化遥感监测. 地理学报, 2004, 59(5): 723-730.] | |
[39] |
Gong Z, Mou K, Wang Q, et al. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Science of the Total Environment, 2021, 769: 144572. DOI: 10.1016/J.SCITOTENV.2020.144572.
doi: 10.1016/J.SCITOTENV.2020.144572 |
[40] | Ren Mei'e, Zhang Renshun, Yang Juhai, et al. The influence of storm tide on mud plain coasts: With special reference to Jiangsu Province. Marine Geology and Quaternary Geology, 1983, 3(4): 1-24. |
[任美锷, 张忍顺, 杨巨海, 等. 风暴潮对淤泥质海岸的影响: 以江苏省淤泥质海岸为例. 海洋地质与第四纪地质, 1983, 3(4): 1-24.]. | |
[41] |
Li P, Ke Y H, Bai J H, et al. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data. Marine Pollution Bulletin, 2019, 149: 110518. DOI: 10.1016/j.marpolbul.2019.110518.
doi: 10.1016/j.marpolbul.2019.110518 |
[42] | Wang Aijun, Gao Shu, Jia Jianjun. Impact of Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes of Jiangsu, China. Acta Oceanologica Sinica, 2006, 28(1): 92-99. |
[王爱军, 高抒, 贾建军. 互花米草对江苏潮滩沉积和地貌演化的影响. 海洋学报, 2006, 28(1): 92-99.] | |
[43] | Liu Jianhua, Yang Shilun, Shi Benwei, et al. Topography and evolution of the tidal trench in the eastern Chongming tidal flat, Changjiang River Estuary. Journal of Marine Sciences, 2012, 30(2): 43-50. |
[刘建华, 杨世伦, 史本伟, 等. 长江口崇明东滩潮沟地貌形态和演变. 海洋学研究, 2012, 30(2): 43-50.] | |
[44] |
D'Alpaos A, Lanzoni S, Marani M, et al. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research: Earth Surface, 2005, 110(F2). DOI: 10.1029/2004JF000182.
doi: 10.1029/2004JF000182 |
[45] |
Li P, Ke Y H, Wang D W, et al. Human impact on suspended particulate matter in the Yellow River Estuary, China: Evidence from remote sensing data fusion using an improved spatiotemporal fusion method. Science of the Total Environment, 2021, 750: 141612. DOI: 10.1016/j.scitotenv.2020.141612.
doi: 10.1016/j.scitotenv.2020.141612 |
[46] |
Murray N J, Phinn S R, Dewitt M, et al. The global distribution and trajectory of tidal flats. Nature, 2019, 565(7738): 222-225.
doi: 10.1038/s41586-018-0805-8 |
[47] |
Fagherazzi S, Gabet E J, Furbish D J. The effect of bidirectional flow on tidal channel planforms. Earth Surface Processes and Landforms, 2004, 29(3): 295-309.
doi: 10.1002/(ISSN)1096-9837 |
[48] |
Wilson C A, Hughes Z J, Fitzgerald D M, et al. Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes? Geomorphology, 2014, 213: 99-115.
doi: 10.1016/j.geomorph.2014.01.002 |
[49] | Chen Yong, He Zhongfa, Li Bing, et al. Spatial distribution of tidal creeks and quantitative analysis of its driving factors in Chongming Dongtan, Shanghai. Journal of Jilin University (Earth Science Edition), 2013, 43(1): 212-219. |
[陈勇, 何中发, 黎兵, 等. 崇明东滩潮沟发育特征及其影响因素定量分析. 吉林大学学报(地球科学版), 2013, 43(1): 212-219.] | |
[50] |
Schwarz C, Ye Q H, Wal D, et al. Impacts of salt marsh plants on tidal channel initiation and inheritance. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 385-400.
doi: 10.1002/2013JF002900 |
[51] |
Zhang X, Xiao X, Wang X, et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995-2018. Remote Sensing of Environment, 2020, 247: 111916. DOI: 10.1016/j.rse.2020.111916.
doi: 10.1016/j.rse.2020.111916 |
[52] | Lu Bing, Jiang Xuezhong. Reclamation impacts on the evolution of the tidal flat at Chongming Eastern Beach in Changjiang setuary. Journal of Remote Sensing, 2013, 17(2): 342-349, 335. |
[路兵, 蒋雪中. 滩涂围垦对崇明东滩演化影响的遥感研究. 遥感学报, 2013, 17(2): 342-349, 335.] | |
[53] |
Li Jianguo, Pu Lijie, Xu Caiyao, et al. The changes and dynamics of coastal wetlands and reclamation areas in central Jiangsu from 1977 to 2014. Acta Geographica Sinica, 2015, 70(1): 17-28.
doi: 10.11821/dlxb201501002 |
[李建国, 濮励杰, 徐彩瑶, 等. 1977—2014年江苏中部滨海湿地演化与围垦空间演变趋势. 地理学报, 2015, 70(1): 17-28.] | |
[54] |
Syvitski J P M. Deltas at risk. Sustainability Science, 2008, 3(1): 23-32.
doi: 10.1007/s11625-008-0043-3 |
[55] | Du Jinglong, Yang Shilun, Zhang Wenxiang, et al. Study of influence on erosion and accumulation of Jiuduansha tidal island by Deep-Water Channel Project at north passage of the Yangtse river. The Ocean Engineering, 2005, 23(3): 78-83. |
[杜景龙, 杨世伦, 张文祥, 等. 长江口北槽深水航道工程对九段沙冲淤影响研究. 海洋工程, 2005, 23(3): 78-83.] |
[1] | 何磊,叶思源,袁红明,薛春汀. 黄河三角洲利津超级叶瓣时空范围的再认识[J]. 地理学报, 2019, 74(1): 146-161. |
[2] | 夏非, 张永战, 王瑞发, 张振克, 彭修强. 苏北废黄河水下三角洲沉积范围研究述评[J]. 地理学报, 2015, 70(1): 29-48. |
[3] | 刘小喜, 陈沈良, 蒋超, 胡进, 张林. 苏北废黄河三角洲海岸侵蚀脆弱性评估[J]. 地理学报, 2014, 69(5): 607-618. |
[4] | 刘艳霞, 黄海军, 丘仲锋, 陈纪涛, 杨曦光. 基于影像间潮滩地形修正的海岸线监测研究——以黄河三角洲为例[J]. 地理学报, 2012, 67(3): 377-387. |
[5] | 彭俊, 陈沈良, 李谷祺, 刘锋, 陈广泉. 黄河三角洲岸线及现行河口区水下地形演变[J]. 地理学报, 2012, 67(3): 368-376. |
[6] | 连煜, 王新功, 黄翀, 刘高焕, 王瑞玲, 张绍锋,刘月良,Bas Pedroli, Michiel van Eupen. 基于生态水文学的黄河口湿地生态需水评价[J]. 地理学报, 2008, 63(5): 451-461. |
[7] | 王红, 刘高焕, 宫鹏. 利用Cokriging提高估算土壤盐离子浓度分布的精度——以黄河三角洲为例[J]. 地理学报, 2005, 60(3): 511-518. |
[8] | 李安龙,李广雪,曹立华,张庆德,邓声贵. 黄河三角洲废弃叶瓣海岸侵蚀与岸线演化[J]. 地理学报, 2004, 59(5): 731-737. |
[9] | 黄海军,樊辉. 黄河三角洲潮滩潮沟近期变化遥感监测[J]. 地理学报, 2004, 59(5): 723-730. |
[10] | 岳天祥,叶庆华. 景观连通性模型及其应用[J]. 地理学报, 2002, 57(1): 67-75. |
[11] | 许学工, 陈晓玲, 郭洪海, 林辉平. 黄河三角洲土地利用与土地覆被的质量变化[J]. 地理学报, 2001, 56(6): 640-648. |
[12] | 关元秀, 刘高焕, 王劲峰. 基于GIS的黄河三角洲盐碱地改良分区[J]. 地理学报, 2001, 56(2): 198-205. |
[13] | 叶青超. 黄河断流对三角洲环境的恶性影响[J]. 地理学报, 1998, 53(5): 385-392. |
[14] | 许学工. 黄河三角洲土地结构分析[J]. 地理学报, 1997, 52(1): 18-26. |
[15] | 徐君亮, 李春初. 评介《中国的三大三角洲》[J]. 地理学报, 1995, 50(6): 568-569. |